

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

1

Luxand, Inc.
https://www.luxand.com

Luxand FaceSDK
 8.1

Face Detection and Recognition Library

Developer’s Guide

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

2

Table of Contents

Overview ... 6

Requirements .. 6

Technical Specifications ... 7

Face Detection ... 7
Face Matching ... 7
Live Video Recognition with Tracker API ... 7
Facial Feature Detection .. 8
Eye Centers Detection .. 8
Gender Recognition .. 8
Age Recognition .. 8
Facial Expression Recognition ... 8
Liveness detection .. 8
Multi-Core Support ... 9
Library Size ... 9

Installation .. 9

Windows .. 9
Linux/macOS ... 9
Directory Structure ... 9

Sample Applications ... 10

Using FaceSDK with Programming Languages .. 12

Using with .NET (C# and VB) ... 12
Using CImage class in .NET .. 13

CImage(); .. 14
CImage(Int); .. 14
CImage.ReloadFromHandle(); .. 14

Using with C/C++ .. 14
Using with Delphi .. 15
Using with Java .. 15
Using with Cocoa ... 15
Using with VisualBasic 6.0 .. 15
Using with iOS ... 16
Using with Android .. 16
Using with Python .. 16
Unicode support ... 16

Redistributables .. 16

Usage Scenarios .. 17

Library Activation .. 18

FSDK_GetHardware_ID Function ... 18
FSDK_ActivateLibrary Function ... 19
FSDK_GetLicenseInfo Function .. 19

Initialization .. 20

FSDK_Initialize Function .. 20
FSDK_Finalize Function .. 20

Configuration .. 21

FSDK_SetParameter Function ... 21
FSDK_SetParameters Function .. 22

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

3

FaceSDK Parameters .. 22
Face detection parameters .. 23

Working with Images ... 23

FSDK_CreateEmptyImage Function.. 24
FSDK_LoadImageFromFile Function.. 24
FSDK_LoadImageFromFileW Function .. 25
FSDK_SaveImageToFile Function .. 26
FSDK_SaveImageToFileW Function .. 26
FSDK_LoadImageFromBuffer Function ... 27
FSDK_LoadImageFromJpegBuffer Function .. 28
FSDK_LoadImageFromPngBuffer Function ... 29
FSDK_GetImageBufferSize Function .. 29
FSDK_SaveImageToBuffer Function .. 30
FSDK_LoadImageFromHBitmap Function ... 31
FSDK_SaveImageToHBitmap Function .. 31
FSDK.LoadImageFromCLRImage Function ... 32
FSDK.SaveImageToCLRImage Function .. 32
FSDK.LoadImageFromAWTImage Function .. 33
FSDK.SaveImageToAWTImage Function .. 33
FSDK_SetJpegCompressionQuality .. 34
FSDK_GetImageWidth Function ... 34
FSDK_GetImageHeight Function .. 35
FSDK_CopyImage Function .. 35
FSDK_ResizeImage Function .. 36
FSDK_RotateImage Function .. 37
FSDK_RotateImageCenter Function.. 38
FSDK_RotateImage90 Function .. 38
FSDK_CopyRect Function... 39
FSDK_CopyRectReplicateBorder Function... 40
FSDK_MirrorImage Function .. 41
FSDK_FreeImage Function ... 42

Face Detection ... 42

Face Detection Models ... 42
Face Detection on Thermal Images .. 43
Data types ... 44
FSDK_DetectFace Function... 45
FSDK_DetectMultipleFaces Function ... 46
FSDK_SetFaceDetectionParameters Function ... 47
FSDK_SetFaceDetectionThreshold Function .. 49

Facial Feature Detection .. 49

FSDK_DetectFacialFeatures Function ... 50
FSDK_DetectFacialFeaturesInRegion Function .. 51
FSDK_DetectEyes Function .. 53
FSDK_DetectEyesInRegion Function.. 54
Detected Facial Features .. 55

Mask-on Face Detection... 58

Face Matching .. 59

FSDK_GetFaceTemplate Function .. 60
FSDK_GetFaceTemplateInRegion Function ... 61
FSDK_GetFaceTemplateUsingEyes Function ... 62
FSDK_GetFaceTemplateUsingFeatures Function ... 63
FSDK_MatchFaces Function ... 64
FSDK_GetMatchingThresholdAtFAR Function .. 65
FSDK_GetMatchingThresholdAtFRR Function .. 66

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

4

Gender, Age and Facial Expression Recognition .. 67

FSDK_DetectFacialAttributeUsingFeatures Function ... 67
FSDK_GetValueConfidence Function ... 69

Liveness Detection .. 70

Passive Liveness ... 70
Active Liveness .. 70
Thermal Face Detection ... 71

Working with Cameras .. 71

Data Types ... 71
FSDK_InitializeCapturing Function .. 72
FSDK_FinalizeCapturing Function .. 73
FSDK_SetCameraNaming Function .. 73
FSDK_GetCameraList Function .. 74
FSDK_GetCameraListEx Function .. 75
FSDK_FreeCameraList Function ... 76
FSDK_GetVideoFormatList Function ... 76
FSDK_FreeVideoFormatList Function .. 77
FSDK_SetVideoFormat Function .. 78
FSDK_OpenVideoCamera Function .. 78
FSDK_OpenIPVideoCamera Function .. 79
FSDK_SetHTTPProxy Function .. 80
FSDK_GrabFrame Function .. 81
FSDK_CloseVideoCamera Function ... 82

Tracker API: Face Recognition and Tracking in Video Streams 82

What is Tracker API ... 82
Understanding Identifiers ... 85

A subject can have several identifiers ... 85
Merger of identifiers .. 85
When identifiers are not merged ... 85
Similar identifiers .. 85

Tracker Memory ... 86
Memory available for each subject.. 86
Imposing memory limits .. 86
How to set the memory limit .. 87

Tracker Parameters ... 87
Face tracking parameters .. 87
Face recognition parameters ... 87
Facial feature tracking parameters ... 88

Tuning for Optimal Performance ... 89
Using the API ... 89

Locking identifiers ... 89
Multiple camera support ... 90
Storing original facial images ... 90
Usage Scenario .. 90

User Interaction with the System ... 91
Enrollment ... 91
Dealing with false acceptances ... 92

Saving and Loading Tracker Memory .. 92
Recognition Performance ... 93

Performance measures .. 93
Understanding storage events ... 93
How to measure your rate of storage events ... 93
Understanding FAR ... 94
Understanding R .. 94
Choosing Threshold value ... 94

Gender, Age and Facial Expression Recognition ... 95

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

5

Face, Eye and Facial Feature Tracking .. 96
Counting the number of people ... 96

Thread Safety ... 97
FSDK_CreateTracker Function .. 97
FSDK_FreeTracker Function ... 97
FSDK_ClearTracker Function ... 98
FSDK_SetTrackerParameter Function ... 98
FSDK_SetTrackerMultipleParameters Function .. 99
FSDK_GetTrackerParameter Function .. 100
FSDK_FeedFrame Function... 101
FSDK_GetTrackerEyes Function ... 102
FSDK_GetTrackerFacialFeatures Function ... 103
FSDK_GetTrackerFacePosition Function .. 104
FSDK_GetTrackerFacialAttribute Function .. 104
FSDK_LockID Function .. 106
FSDK_UnlockID Function... 106
FSDK_PurgeID Function ... 107
FSDK_GetName Function ... 108
FSDK_SetName Function .. 108
FSDK_GetIDReassignment Function .. 109
FSDK_GetSimilarIDCount Function ... 110
FSDK_GetSimilarIDList Function ... 111
FSDK_GetAllNames Function ... 111
FSDK_SaveTrackerMemoryToFile Function .. 112
FSDK_LoadTrackerMemoryFromFile Function ... 113
FSDK_GetTrackerMemoryBufferSize Function ... 114
FSDK_SaveTrackerMemoryToBuffer Function .. 115
FSDK_LoadTrackerMemoryFromBuffer Function ... 115

Multi-Core Support .. 116

FSDK_GetNumThreads Function .. 117
FSDK_SetNumThreads Function ... 117

Thread Safety .. 118

Migration ... 119

Migration from FaceSDK 7.2, 7.2.1 to FaceSDK 8.0 .. 119
Migration from FaceSDK 7.1 to FaceSDK 7.2, 7.2.1 .. 119
Migration from FaceSDK 6.5.1 to FaceSDK 7.0, 7.1 .. 119

Face Detection... 119
Template format changes... 120
Removal of libstdc++ dependency on iOS .. 120

Migration from FaceSDK 6.5 to FaceSDK 6.5.1 ... 120
Migration from FaceSDK 6.3, 6.3.1, 6.4 to FaceSDK 6.5 ... 121

Template format changes... 121
Template matching .. 121
Tracker API changes ... 121

Migration from FaceSDK 6.2 to FaceSDK 6.3, 6.3.1, 6.4 ... 122
Migration from FaceSDK 6.0, 6.0.1, 6.1 to FaceSDK 6.2 ... 123
Migration from FaceSDK 5.0, 5.0.1 to FaceSDK 6.0, 6.0.1, 6.1 ... 123
Migration from FaceSDK 4.0 to FaceSDK 5.0, 5.0.1 .. 124
Migration from FaceSDK 3.0 to FaceSDK 4.0 .. 124
Migration from FaceSDK 2.0 to FaceSDK 3.0 .. 125

Error Codes .. 125

Library Information .. 127

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

6

Overview
Luxand FaceSDK is a cross-platform face detection and recognition library that can be easily

integrated into the customer’s application. FaceSDK offers the API (Application

Programming Interface) to detect and track faces and facial features, to recognize gender, age

and facial expressions (if a smile is present and if the eyes are open or closed), and to

recognize faces on still images and videos. FaceSDK also allows detecting faces on thermal

images.

FaceSDK is provided with Tracker API which allows tracking and recognizing faces in live

video. Tracker API simplifies working with video streams, offering the functions to tag

subjects with names and recognize them further.

The SDK provides the coordinates of 70 facial feature points (including eyes, eyebrows,

mouth, nose and face contours). Luxand FaceSDK uses multiple processor cores to speed up

recognition. The library supports DirectShow-compatible web cameras on Windows, v4l2-

compatible web cameras on Linux and IP cameras with an HTTP/MJPEG interface on every

platform.

Luxand FaceSDK is a dynamic link library available for 32-bit and 64-bit versions of

Windows and Linux, 64-bit macOS, iOS, Android. The SDK contains interface header files

and sample applications for C++, Microsoft Visual C++

6.0/2005/2008/2010/2012/2013/2015/2017+, Visual Basic .NET 2005/2008/2010+, Microsoft

C# .NET 2005/2008/2010+, Borland Delphi 6.0+, Netbeans (Java), Xcode 7+ (iOS), Eclipse

ADT (Android), Android Studio (Android), Visual Basic 6.0, C++Builder 6.0, Python, Flutter

and React Native.

Requirements
The FaceSDK library supports the following platforms:

• Windows 2008R2/2012/2016/2019/2022, Windows 7, Windows 8, Windows 10,

Windows 11

• Linux (RHEL 7+, CentOS 7+ and other)

• Linux armv7/arm64 (Raspberry Pi2+)

• macOS 10.13+, arm64/x86_64

• iOS 9.0+, arm64/ armv7/ x86_64/ x86(iPhone, iPad, simulator)

• Android 5.0+ (platform version 21+), arm64 (arm64-v8a)/ armv7 (armeabi-v7a)/ x86

An Intel Xeon or AMD Ryzen processor is recommended for better performance.

Minimum system requirements:

• 1 GHz processor

• 256 MB RAM

Recommended system requirements:

• Intel Core i7, i9, Xeon or AMD Ryzen processor

• 2 GB RAM

• DirectShow/v4l2-compatible webcam (on Windows or Linux)

• IP camera with MJPEG interface (like AXIS IP cameras)

Note that the web camera functions are available only on Windows and Linux. IP cameras are

accessible on all platforms.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

7

Technical Specifications
The FaceSDK library has the following technical specifications:

Face Detection

• Robust frontal face detection

• Detection of multiple faces in a photo

• Detection of faces on thermal images

• Head rotation support: –30..30 degrees of in-plane rotation and –30..30 degrees out-

of-plane rotation

• Determines in-plane face rotation angle

• Detection speed:

o Realtime detection (webcam resolution, –15..15 degrees of in-plane head

rotation): 0.00154 seconds (649 FPS) (AMD*), 0.00863 seconds (116 FPS)

(iOS*), 0.01414 seconds (71 FPS) (Android*)

o Reliable detection (digital camera resolution, –30..30 degrees of in-plane head

rotation): 0.0081 seconds (AMD), 0.05 seconds (iOS), 0.082 seconds

(Android)

• Returned information for each detected face: (x,y) coordinates of face center, face

width and rotation angle

• Easy configuration of face detection parameters

Face Matching

• Matching of two faces at given FAR (False Acceptance Rate) and FRR (False

Rejection Rate)

• Enrollment time:

o Webcam resolution, using FSDK_GetFaceTemplate: 0.01417 seconds (71

FPS) (AMD), 0.03725 seconds (27 FPS) (iOS), 0.0777 seconds (13 FPS)

(Android)

• Template Size: 1040 bytes

• Matching speed:

o Single thread, templates per second: 5000000 (AMD), 3205128 (iOS), 242600

(Android)

o Multiple parallel threads, templates per second: 53763440 (AMD), 10101010

(iOS), 1096791 (Android)

• Returned information: facial similarity level

Live Video Recognition with Tracker API

• Assigns a unique ID to each subject detected in video

• Allows tagging any subject in video with a name, and recognizing it further

• No requirement for a subject to pose to be enrolled

• Constant learning of subjects’ appearance

• Provides with estimates of false acceptance rate and recognition rate

• Tracks multiple faces and their facial features

• Recognizes male and female genders

• Recognizes age

• Recognizes facial expressions

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

8

• Detects whether a subject is live

Facial Feature Detection

• Detection of 70 facial feature points (eyes, eyebrows, mouth, nose, face contour)

• Detection time (using FSDK_DetectFacialFeaturesInRegion, not including face

detection stage): 0.00027 seconds (3733 FPS) (AMD), 0.0003 seconds (3333 FPS)

(iOS), 0.00188 seconds (531 FPS) (Android)

• Allowed head rotation: –30..30 degrees of in-plane rotation, –20..20 degrees out-of-

plane rotation

• Returned information: array of 70 (x,y) coordinates of each facial feature point

Eye Centers Detection

• Detection of eye centers only, detection time (not including face detection stage):

0.00027 seconds (3752 FPS) (AMD), 0.00028 seconds (3571 FPS) (iOS), 0.00188

seconds (531 FPS) (Android)

• Returned information: two (x,y) coordinates of left eye center and right eye center

Gender Recognition

• Recognition of different genders

• Gender recognition time (not including face and facial feature detection stages):

0.0039 seconds (AMD), 0.0063 seconds (iOS), 0.0122 seconds (Android)

• Returned information: confidence level in each gender

Age Recognition

• Recognition of age

• Age recognition time (not including face and facial feature detection stages): 0.0051

seconds (AMD), 0.0075 seconds (iOS), 0.0131 seconds (Android)

• Returned information: age of a person

Facial Expression Recognition

• Recognizes if the subject smiles and if the eyes are open or closed

• Expression recognition time (not including face and facial feature detection stages):

0.0043 seconds (AMD), 0.0063 seconds (iOS), 0.0122 seconds (Android)

• Returned information: confidence level in each facial expression

Liveness detection

• Detects whether the subject is live (i.e. not a photo/video presented to the camera)

• Works with still images and videos

• Liveness detection time (not including face and facial feature detection stages): 0.017

seconds (AMD), 0.016 seconds (iOS), 0.034 seconds (Android)

• Returned information: the probability of the subject being live

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

9

Multi-Core Support

• The library uses all available processor cores when executing face detection or

recognition functions to maximize the performance.

Library Size

• The size of the redistributables does not exceed 160 MB for each platform.

* Measured on AMD Ryzen 5 1600X processor with 12 threads, iPhone X with 6 threads,

Google Pixel 2 (Snapdragon 835) with 8 threads.

Installation

Windows

To install Luxand FaceSDK, run the installation file:

Luxand_FaceSDK_Setup.exe

and follow the instructions.

FaceSDK is installed to the C:\Program Files\Luxand\FaceSDK {VER} directory

on 32-bit machines and to the C:\Program Files (x86)\Luxand\FaceSDK

{VER} directory on 64-bit machines by default, where {VER} is the version number of

FaceSDK.

FaceSDK is a copy-protected library, and your application must activate the library on startup

(see the Library Activation chapter).

Linux/macOS

Unpack the Luxand_FaceSDK.tar.bz2 archive into the desired directory.

Directory Structure

The FaceSDK directory contains the following directories and files:

bin\ FaceSDK binary files

bin\android FaceSDK Android binaries

bin\iOS FaceSDK iOS binaries

bin\linux_armv7 FaceSDK Linux/ARMv7 binaries

bin\linux_arm64 FaceSDK Linux/ARM64 binaries

bin\linux_x86 FaceSDK Linux 32-bit binaries

bin\linux_x86_64 FaceSDK Linux 64-bit binaries

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

10

bin\osx_x86_64 FaceSDK macOS Intel 64-bit binaries

bin\osx_arm64 FaceSDK macOS ARM64 binaries

bin\win32 FaceSDK Windows 32-bit binaries and stub library files

bin\win64 FaceSDK Windows 64-bit binaries and stub library files

demo\ Demo applications (win32)

include\ Header files

samples\ Sample applications

Sample Applications
FaceSDK is distributed with the following sample applications (they can be found in the

FaceSDK samples\ directory):

1. LiveRecognition

This application receives video from a camera, allows tagging any subject with a

name, and then display the name (recognizing the subject). The application utilizes

Tracker API. Source code is available on Microsoft C# 2005/2008, Microsoft C# 2010

and higher, iOS (Objective-C and Swift), Android (Eclipse and Android Studio),

Borland Delphi 6.0 and higher, C++/GTK 3.0+, Microsoft Visual C++

2005/2008/2010/2012/2013/2015/2017, Microsoft Visual Basic .NET 2005/2008,

Microsoft Visual Basic .NET 2010 and higher, Java and Visual Basic 6.0. The

iOS/Android versions are published in the Apple AppStore and in Google Play

(“Luxand Faсe Recognition” application).

2. FaceTracking

This application receives video from a webcam and highlights all detected faces with

rectangles. The application utilizes Tracker API. Source code is available on

Microsoft C# 2010 and higher, Borland Delphi 6.0 and higher, Microsoft Visual C++

2005/2008/2010/2012/2013/2015/2017, Microsoft Visual Basic .NET 2010 and

higher, Java and Visual Basic 6.0.

3. Lookalikes

This application allows the user to create a database of faces and run a search for the

best matches (the most similar face from the database is shown). Source code is

available on Microsoft Visual C++ 2005/2008/2010/2012/2013/2015/2017, Microsoft

C# 2010 and higher, Java and Borland Delphi 6.0 and higher. There is an example of

working with Microsoft SQL database on Microsoft C# 2010 and higher, and with and

SQLite on Microsoft Visual C++ 2005/2008/2010/2012/2013/2015/2017. To run the

Microsoft SQL example, you need to attach the database (located in the DB folder of

the sample) to the Microsoft SQL Server.

4. LiveFacialFeatures

This application tracks users’ facial features in real time using a web camera. The

coordinates of facial features are smoothed by Tracker API to prevent jitter. Source

code is available on Microsoft C# 2010 and higher, Borland Delphi 6.0 and higher,

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

11

Java, Microsoft Visual C++ 2005/2008/2010/2012/2013/2015/2017, iOS, Android

(Eclipse and Android Studio) and Microsoft Visual Basic .NET 2010 and higher.

5. AgeGenderRecognition

Using Tracker API, this application recognizes the gender and age of a subject looking

into a webcam. Source code is available on Microsoft C# 2010 and higher, Borland

Delphi 6.0 and higher, Java, Microsoft Visual C++

2005/2008/2010/2012/2013/2015/2017, iOS, Android (Eclipse and Android Studio)

and Microsoft Visual Basic .NET 2010 and higher.

6. ExpressionRecognition

Using Tracker API, this application recognizes if a subject looking into a webcam is

smiling, and if the subject's eyes are open or closed. Source code is available on

Microsoft C# 2010 and higher, Borland Delphi 6.0 and higher, Java, Microsoft Visual

C++ 2005/2008/2010/2012/2013/2015/2017, iOS, Android (Eclipse and Android

Studio) and Microsoft Visual Basic .NET 2010 and higher.

7. FacialFeatures

This application opens a photo, detects a face in a photo (only one face, the one that

can be detected best), detects facial features and draws a frame around the detected

face and detected features. Source code is available on Microsoft C# 2010 and higher,

Borland C++ Builder 6.0, Borland Delphi 6.0 and higher, Java, Microsoft Visual C++

2005/2008/2010/2012/2013/2015/2017, iOS, Android (Eclipse and Android Studio),

Microsoft Visual Basic .NET 2010 and higher, Visual Basic 6.0.

8. IPCamera

This application opens an IP camera (allowing the user to specify its address, user

name and password), displays the image from the camera and tracks faces. The

application utilizes Tracker API. Source code is available on Microsoft C# 2010 and

higher, Borland Delphi 6.0 and higher, Java, Microsoft Visual C++

2005/2008/2010/2012/2013/2015/2017 and higher, Microsoft Visual Basic .NET 2010

and higher.

9. Portrait

This application is for the command line. The application receives a picture, detects a

face and, if the face is found, crops it and saves it to a file. Source code is available on

C++.

10. Thermal

This application loads a thermal face detection model and allows you to open a

grayscale thermal image (which you may have received from a thermal camera),

detect faces on the image and draw frames around the detected faces. Source code is

available on Microsoft C# 2010 and higher, Microsoft Visual C++

2005/2008/2010/2012/2013/2015/2017 and higher, iOS, Android and C++.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

12

11. ActiveLiveness

This application asks a subject looking into a camera to rotate their head and smile in a

certain way to detect liveness. Source code is available on Microsoft C# 2010 and

higher, Microsoft Visual C++ 2017 and higher, iOS, Android, Java and Python.

12. PassiveLiveness

This application automatically detects the liveness of a subject looking into a camera

(without any assistance from the subject). Source code is available on Microsoft C#

2010 and higher, Microsoft Visual C++ 2017 and higher, iOS, Android, Java and

Python.

13. Advanced

This sample provides source code for .NET wrapper that links facesdk.dll

dynamically. Refer to Using with .NET (C# and VB) for details. The sample also

provides source code for Java, Python, Flutter, React Native and Web Assembly

wrappers.

Using FaceSDK with Programming Languages
To access the FaceSDK library functions, you need to use its binary file in your applications.

The specific file depends on the platform:

• Windows applications use facesdk.dll

• Linux and Android applications use libfsdk.so

• macOS applications use libfsdk.dylib

• .NET applications use facesdk.NET.dll and the appropriate binary file

(facesdk.dll, libfsdk.dylib or libfsdk.so)

• Java applications use facesdk.jar, jna.jar and the appropriate binary file

(facesdk.dll, libfsdk.dylib or libfsdk.so)

• iOS applications use libfsdk-static.a

• VB6 applications use facesdk-vb.dll in addition to facesdk.dll

On Windows, Linux and macOS it is usually recommended to store this file in the directory

where the executable file of your application is located. Alternatively, you may keep the file

in:

• the working directory of your application

• the directory specified in the path environment variable of your system: PATH

(Windows), LD_LIBRARY_PATH (Linux), DYLD_LIBRARY_PATH (macOS).

You need to include interface header files into your application project in order to use

FaceSDK.

Using with .NET (C# and VB)

You need to have .NET Framework 4.0+ on your system.

For Microsoft .NET applications, you need to add the .NET component into your project.

Follow these steps to add the component in Visual Studio 2010+:

• Select Project – Add Reference – Browse

• Choose the file include\.NET\FaceSDK.NET.dll

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

13

• Add the following statement to the beginning of your application:

using Luxand

After that you may use the methods of the Luxand.FSDK namespace for general FaceSDK

functions, and Luxand.FSDKCam namespace for webcam-related functions. You may refer

just to FSDK and FSDKCam namespaces if using Luxand is specified.

Once FaceSDK.NET.dll is added to the references, it will be redistributed automatically

with your application, so no specific deployment actions are required. However you need to

redistribute facesdk.dll (or libfsdk.so on Linux / libfsdk.dylib on

macOS) with your application.

By default, the documentation refers to C/C++ declarations of FaceSDK functions. For

example, the function to detect a face is referred to as FSDK_DetectFace function. To

refer to this function in .NET, replace the FSDK_ prefix with FSDK. namespace. Thus, the

reference to this function becomes FSDK.DetectFace (note that webcam-specific

functions are located in the FSDKCam. namespace; refer to Working with Web Cameras for

details).

If you are using an older version of .NET (for example, 2.0, 3.0 or 3.5) or just need a

component for a specific .NET version, you may use the source code available in the

samples\advanced\.NET wrapper directory. The LiveRecognition sample includes

projects for Microsoft C# 2005/2008 and Visual Basic .NET 2005/2008 that are using this

wrapper.

Using CImage class in .NET

CImage is a class for Microsoft .NET for easy manipulation of images. CImage encapsulates

an HImage handle and provides convenient methods for applying FaceSDK functions to that

image.

To start working with CImage, just create an instance of it. You can pass a file path, HImage

handle, HBITMAP handle or System.Drawing.Image object to the constructor to load the

corresponding object into the image. Alternatively, call the constructor without parameters to

create an empty image. Refer to the functions FSDK_LoadImageFromFile,

FSDK_LoadImageFromHBitmap, FSDK.LoadImageFromCLRImage and

FSDK_CreateEmptyImage for further details.

A CImage instance has three properties: ImageHandle, Width and Height. ImageHandle is a

handle of the internal representation of the image encapsulated by the class. Width and Height

properties are the width and height of an image in pixels (see FSDK_GetImageWidth and

FSDK_GetImageHeight). If you alter the ImageHandle handle directly (for example,

executing an FSDK. method applied to that image handle), you must update the CImage

object by calling the CImage.ReloadFromHandle() method. CImage throws an exception if

any FaceSDK function, called within the CImage method, has returned an error.

Most CImage methods operating with an image (for example, the Resize() method) return the

processed image as the result.

The CImage destructor releases ImageHandle, so there is no need to call FSDK.FreeImage

explicitly after the instance has been destroyed.

Note that when you pass an existing image handle to the constructor, it will be freed after the

destruction of the CImage class instance, and become invalid. If you need the original image

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

14

handle to be valid after the CImage class instance is destroyed, consider creating a copy of the

image handle and passing the copy to the CImage constructor.

CImage();

Creates an empty CImage instance.

Syntax:

FSDK.CImage();

CImage(Int);

Creates a CImage instance from image already loaded to FaceSDK.

Syntax:

FSDK.CImage(int ImageHandle);

Parameters:

ImageHandle – the internal handle of an image already loaded to FaceSDK. The destructor

will free the ImageHandle handle.

CImage.ReloadFromHandle();

Updates the internal properties of a CImage instance in accordance with the ImageHandle.

Syntax:

FSDK.CImage.ReloadFromHandle();

Using with C/C++

For Microsoft Visual C++ applications, you need to include the header file

include\C\LuxandFaceSDK.h, and the stub library file facesdk.lib into your

project.

Follow these steps to add the library to your project:

• Copy include\C\LuxandFaceSDK.h into the directory of your project

• For 32-bit applications, copy bin\win32\facesdk.dll and

bin\win32\facesdk.lib into the output directory of your project

• For 64-bit applications, copy bin\win64\facesdk.dll and

bin\win64\facesdk.lib into the output directory of your project

• Choose Project Properties – Linker – Input – Additional Dependencies, and add

facesdk.lib string

• Choose Project Properties – Linker – General – Additional Library Directories

Dependencies, and add $(OutDir) string (a reference to the output directory)

• Add the following statement to the beginning of your application:

include "LuxandFaceSDK.h"

The output directory $(OutDir) typically refers to Debug\ or Release\ in the directory

of your solution. You may change it in the Configuration Properties – General of your project.

You may also choose another directory to store the .lib file, but it is recommended to keep

facesdk.dll in the directory where the executable file of your application is located.

You need to redistribute the file facesdk.dll with your application.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

15

Using with Delphi

For Delphi applications, put facesdk.dll into the working directory of your application

and use the include\Delphi\LuxandFaceSDK.pas unit in your project.

You need to redistribute the file facesdk.dll with your application.

Using with Java

You need JDK 1.6 (or OpenJDK 1.6) to use FaceSDK with Java. The FaceSDK Java wrapper

uses JNA (all information about JNA and the actual version can be found at

https://github.com/twall/jna, but jna.jar is included in the distribution for your convenience).

The FaceSDK java wrapper works with any IDE, but only Netbeans sample projects are

provided with the distribution.

To use FaceSDK in your Netbeans project, follow these steps:

1) Add FaceSDK.jar (include\Java\FaceSDK.jar) and jna.jar

(include\Java\jna.jar) to the Librariessection of the project.

2) Add the following imports to your source code:

import Luxand.*;

import Luxand.FSDK.*;

import Luxand.FSDKCam.*;

3) Put the appropriate facesdk binaries (facesdk.dll, libfdsk.so or

libfdsk.dylib) in the project directory (or to the /usr/lib directory if using

OpenJDK).

You need to redistribute the FaceSDK binaries(facesdk.dll, libfdsk.so or

libfdsk.dylib) as well as FaceSDK.jar and jna.jar with your application.

Using with Cocoa

If you are using Cocoa to write an application in Xcode, make sure that your source code files

(which use FaceSDK) have the .mm extension, so they are compiled as Objective-C++. If the

files have the .m extension, they are compiled as Objective-C and cannot use FaceSDK.

Using with VisualBasic 6.0

For Visual Basic 6.0 applications, put the Visual Basic wrapper (bin\win32\FaceSDK-

VB.dll) into the project directory and add LuxandFaceSDK.bas

(include\VB6\LuxandFaceSDK.bas) module to your project (Select Project – Add

module – Existing and choose a module location). Also you need to put facesdk.dll into

the application working directory.

Note that Tracker API functions employ the Currency data type to store 64-bit integer values.

You need to redistribute both FaceSDK-VB.dll and facesdk.dll with your

application.

Visual Basic 6.0 was released in 1998 and cannot fully support some modern operating

systems. Hence we cannot guarantee that the samples written in Visual Basic 6.0 will work

seamlessly on any Microsoft Windows versions newer than Windows XP.

https://github.com/twall/jna

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

16

Using with iOS

Refer to the Using with Cocoa section. In Objective-C you should use the C++ syntax within

your program.

To enable FaceSDK support in your Xcode iOS project, add bin/iOS/libfsdk-

static.a and include/C/LuxandFaceSDK.h to your project.

Using with Android

For Android Studio you need to copy the directories armeabi-v7a and arm64-v8a contained in

bin/android/ to the app/src/main/jniLibs directory of your project. You also

need to add the include/android/FSDK.java file to the

app/src/main/java/com/luxand directory.

For Eclipse ADT you need to copy the subdirectories contained in bin/android/ to the

libs/ directory of your project. You also need to add the

include/android/FSDK.java file to the src/com/luxand/ directory.

The syntax of some functions on Android is different from the corresponding Java syntax due

to the usage of JNI instead of JNA.

Note: Only arm64 (arm64-v8a), armv7 (armeabi-v7a), x86 and x86_64 architectures are

supported by FaceSDK on the Android platform.

The FSDK class is provided in the binary code form only. Therefore, the “com.luxand”

package name of this class cannot be changed.

Using with Python

Please refer to the samples in the samples\advanced\Python directory.

Unicode support

The library supports Unicode filenames on the Windows platform. If you work with file

names in the Unicode character set, use functions FSDK_LoadImageFromFileW and

FSDK_SaveImageToFileW to open and save files.

Redistributables
The following files may be redistributed with your application:

Windows

bin\win32\facesdk.dll (for 32-bit systems)

bin\win64\facesdk.dll (for 64-bit systems)

bin\win32\FaceSDK-VB.dll (for Visual Basic 6.0 applications)

Linux

bin\linux_x86\libfsdk.so (for 32-bit systems)

bin\linux_x86_64\libfsdk.so (for 64-bit systems)

bin\linux_armv7 (for armv7 systems)

bin\linux_arm64 (for arm64 systems)

macOS
bin\osx_x86_64\libfsdk.dylib

bin\osx_arm64\libfsdk.dylib

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

17

Android

bin\android\arm64-v8a\libfsdk.so

bin\android\armeabi-v7a\libfsdk.so

bin\android\x86\libfsdk.so

bin\android\x86_64\libfsdk.so

iOS NONE (static libraries)

.NET include\.NET\FaceSDK.NET.dll

Java (on

Windows / Linux

/ macOS)

include\Java\FaceSDK.jar

include\Java\jna.jar

Thermal face

detection

thermal.bin (the detection model used in Thermal

samples)

Usage Scenarios
The library usage level depends on the functionality required from Luxand FaceSDK.

If you work with video, consider using Tracker API, as the API provides high-level functions

to recognize subjects and tag them with names, to track their faces and facial features, and to

recognize gender, age and facial expressions. The usage scenario for Tracker API can be

found in the Usage Scenario section of the Tracker API chapter.

Otherwise, the typical scenario is as follows:

1. Activate FaceSDK by calling up the FSDK_ActivateLibrary function with the key

sent by Luxand, Inc.

2. Initialize FaceSDK by calling up the FSDK_Initialize function.

3. Load images either from a file, a buffer or the HBITMAP handle

(FSDK_LoadImageFromFile, FSDK_LoadImageFromBuffer,

FSDK_LoadImageFromHBitmap functions).

4. Set face detection parameters if needed (FSDK_SetFaceDetectionParameters,

FSDK_SetFaceDetectionThreshold).

5. Use FaceSDK functions:

• Detect a face (FSDK_DetectFace) or multiple faces

(FSDK_DetectMultipleFaces) in an image

• Detect facial features if needed (FSDK_DetectFacialFeatures,

FSDK_DetectFacialFeaturesInRegion)

• Extract a face template from the image (FSDK_GetFaceTemplate,

FSDK_GetFaceTemplateInRegion,

FSDK_GetFaceTemplateUsingFeatures)

• Match the face templates (FSDK_MatchFaces) and acquire the facial

similarity level

• To find out if a face belongs to the same person, calculate the matching

threshold at a given FAR or FRR rate

(FSDK_GetMatchingThresholdAtFAR and

FSDK_GetMatchingThresholdAtFRR functions).

6. Finalize the FaceSDK library (FSDK_Finalize function).

To work with a camera, follow these steps*:

1. Initialize camera capturing (FSDK_InitializeCapturing).

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

18

2. Get a list of web cameras available in the system (FSDK_GetCameraList)

3. Get list of video formats supported by the web camera (FSDK_GetVideoFormatList).

4. Set the desired video format for the chosen web camera (FSDK_SetVideoFormat).

5. Open a web camera (FSDK_OpenVideoCamera) or an IP camera

(FSDK_OpenIPVideoCamera).

6. Grab frames (FSDK_GrabFrame) in a loop, displaying them and detecting/recognizing

faces.

7. Close video camera (FSDK_CloseVideoCamera).

8. Delete the list of video formats (FSDK_FreeVideoFormatList).

9. Delete the list of web cameras (FSDK_FreeCameraList).

10. Finalize capturing (FSDK_FinalizeCapturing).

*If you work with an IP camera, you should not follow steps 2, 3, 4, 8 and 9.

Library Activation
FaceSDK is a copy-protected library, and must be activated with a license key before its use.

You need to pass the license key received from Luxand, Inc. to the FSDK_ActivateLibrary

function before initializing Luxand FaceSDK. Almost all FaceSDK functions will return the

FSDKE_NOT_ACTIVATED error code in case the library is not activated. To retrieve your

license information, call FSDK_GetLicenseInfo. This function returns the name the library is

licensed to. You may need to use the FSDK_GetHardware_ID function to obtain your

hardware ID if your license is restricted to one machine only. Additionally, you can find out

hardware ID by running the hardwareid program (ShowHardwareID.exe for

Windows), which is located in the bin directory.

To get a temporary evaluation key from Luxand, Inc., run License Key Wizard from the Start

– Luxand – FaceSDK menu.You may also request this key at

https://luxand.com/facesdk/requestkey/.

FSDK_GetHardware_ID Function

Generates a Hardware ID code.

C++ Syntax:

int FSDK_GetHardware_ID(char* HardwareID);

Delphi Syntax:

function FSDK_GetHardware_ID(HardwareID: PChar): integer;

C# Syntax:

int FSDK.GetHardwareID(out string HardwareID);

VB Syntax:

Function FSDKVB_GetHardwareID(ByRef HardwareID As Byte) As

Long

Java Syntax:

int FSDK.GetHardware_ID(String HardwareID[]);

https://luxand.com/facesdk/requestkey/

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

19

iOS and Android: not implemented.

Parameters:

HardwareID – address of the null-terminated string for receiving the Hardware ID code.

Return Value:

Returns FSDKE_OK if successful.

FSDK_ActivateLibrary Function

Activates the FaceSDK library.

C++ Syntax:

int FSDK_ActivateLibrary(char* LicenseKey);

Delphi Syntax:

function FSDK_ActivateLibrary(LicenseKey: PChar): integer;

C# Syntax:

int FSDK.ActivateLibrary(out string LicenseKey);

VB Syntax:

Function FSDKVB_ActivateLibrary(ByVal LicenseKey As String) As

Long

Java and Android Syntax:

int FSDK.ActivateLibrary(String LicenseKey);

Parameters:

LicenseKey– License key you received from Luxand, Inc.

Return Value:

Returns FSDKE_OK if the registration key is valid and not expired.

FSDK_GetLicenseInfo Function

Retrieves license information.

C++ Syntax:

int FSDK_GetLicenseInfo(char* LicenseInfo);

Delphi Syntax:

function FSDK_GetLicenseInfo(LicenseInfo: PAnsiChar): integer;

C# Syntax:

int FSDK.GetLicenseInfo(out string LicenseInfo);

VB Syntax:

Function FSDKVB_GetLicenseInfo(ByRef LicenseInfo As Byte) As

Long

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

20

Java and Android Syntax:

int FSDK.GetLicenseInfo(String LicenseInfo[]);

Parameters:

LicenseInfo – address of the null-terminated string for receiving the license

information. This variable should be allocated no less than 256 bytes of memory.

Return Value:

Returns FSDKE_OK if successful.

Initialization

FSDK_Initialize Function

Initializes the FaceSDK library. Should be called before using of any face detection functions.

C++ Syntax:

int FSDK_Initialize(char* DataFilesPath);

Delphi Syntax:

function FSDK_Initialize(DataFilesPath: PChar): integer;

C# Syntax:

int FSDK.InitializeLibrary();

VB Syntax:

Function FSDKVB_Initialize(ByRef DataFilesPath As Byte) As

Long

Java and Android Syntax:

int FSDK.Initialize();

Parameters:

DataFilesPath – pointer to the null-terminated string specifying the path where

facesdk.dll is stored. An empty string means the current directory. (Note: the parameter is not

used since FaceSDK 1.8; an empty string might be passed as this parameter.)

Return Value:

Returns FSDKE_OK if successful or FSDK_IO_ERROR if an I/O error occurs.

FSDK_Finalize Function

Finalizes the FaceSDK library. Should be called when the application is exited.

C++ Syntax:

int FSDK_Finalize();

Delphi Syntax:

function FSDK_Finalize: integer;

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

21

C# Syntax:

int FSDK.FinalizeLibrary();

VB Syntax:

Function FSDKVB_Finalize() As Long

Java and Android Syntax:

int FSDK.Finalize();

Return Value:

Returns FSDKE_OK if successful.

Configuration

FSDK_SetParameter Function

Sets a parameter for FaceSDK. See the FaceSDK Parameters section for details.

Note that, to set Tracker parameters, the FSDK_SetTrackerParameter or

FSDK_SetTrackerMultipleParameters function should be used instead.

C++ Syntax:

int FSDK_SetParameter(const char * ParameterName, const char *

ParameterValue);

Delphi Syntax:

function FSDK_SetParameter(ParameterName, ParameterValue:

PAnsiChar): integer;

C# Syntax:

int FSDK.SetParameter(string ParameterName, string

ParameterValue);

VB Syntax:

Function FSDKVB_SetParameter(ByVal ParameterName As String,

ByVal ParameterValue As String) As Long

Java and Android Syntax:

int FSDK.SetParameter(String ParameterName, String

ParameterValue);

Parameters:

ParameterName – name of the parameter to be set.

ParameterValue – value of the parameter.

Return Value:

Returns FSDKE_OK if successful.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

22

FSDK_SetParameters Function

Sets multiple parameters for FaceSDK.The parameters and their values are specified in the

following format:

"Parameter1=Value1[;Parameter2=Value2[;…]]"

See the FaceSDK Parameters section for details.

C++ Syntax:

int FSDK_SetParameters(const char * Parameters, int *

ErrorPosition);

Delphi Syntax:

function FSDK_SetParameters(Parameters: PAnsiChar;

ErrorPosition: PInteger): integer;

C# Syntax:

int FSDK.SetParameters(string Parameters, ref int

ErrorPosition);

VB Syntax:

Function FSDKVB_SetParameters(ByVal Parameters As String,

ByRef ErrorPosition As Long) As Long

Java and Android Syntax:

int FSDK.SetParameters(String Parameters, IntByReference

ErrorPosition);

Parameters:

Parameters – string containing the parameters and the corresponding values to be set.

ErrorPosition – pointer to the integer variable that will receive the position of the

character that caused the syntax error in the string.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_SYNTAX_ERROR and sets the value of

the ErrorPosition variable in case of syntax error.

Example:

int err = 0;

FSDK_SetParameters("FaceDetectionModel=thermal.bin;TrimOutOfSc

reenFaces=false;TrimFacesWithUncertainFacialFeatures=false",

&err);

FaceSDK Parameters

FaceSDK allows for setting a number of parameters with the FSDK_SetParameter or

FSDK_SetParameters function.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

23

Face detection parameters

Note that the Tracker API does not use the face detection parameters set with

FSDK_SetParameter or FSDK_SetParameters. Instead, you should use

FSDK_SetTrackerParameter or FSDK_SetTrackerMultipleParameters.

Also note that additional face detection parameters can be set by calling the

FSDK_SetFaceDetectionParameters and FSDK_SetFaceDetectionThreshold functions.

FaceDetectionModel – a path to the face detection model file to load. You can use it to

load thermal face detection model (see the Thermal sample application). The value “default”

can be passed to switch back to the default visual face detection model.

TrimOutOfScreenFaces – determines whether faces that go beyond the edges of the

image should be excluded from face detection. The default value is True (such faces aren’t

detected). Use True when you extract face templates from the detected faces and match them.

Setting the value to False allows you to detect faces in a larger number of cases, but such

faces may yield higher false acceptance rates when matching faces.

TrimFacesWithUncertainFacialFeatures – determines whether faces with

uncertain facial features should not be detected. The default value is True (faces with

uncertain facial features aren’t detected). Should be set to False for a thermal face detection

model. Use True when you extract face templates from the detected faces and match them.

Setting the value to False allows you to detect faces in a larger number of cases, but such

faces may yield higher false acceptance rates when matching faces.

Working with Images
Images are represented as the HImage data type.

C++ Declaration:

typedef int HImage;

C# Declaration:

int Image

Delphi Declaration:

HImage = integer;

PHImage = ^HImage;

Java and Android Declaration:

class HImage {

 protected int himage;

};

FaceSDK provides a number of functions to load images to the internal representation from

files, buffers or HBITMAP handles and to save images from the internal representation to

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

24

files, buffers and HBITMAP handles. Each FSDK_LoadImageFromXXXX function creates a

new HImage handle, which can be deleted using the FSDK_FreeImage function.

Note that when you perform multiple stages of recognition on large images (for example,

when you first detect a face, and then create its template using

FSDK_GetFaceTemplateInRegion), consider first resizing the image to a smaller size to

speed up operations. Note that you must resize the image to dimensions no smaller than the

InternalResizeWidth parameter of the FSDK_SetFaceDetectionParameters function if you

perform face detection, in order to keep the same accuracy of face detection.

FSDK_CreateEmptyImage Function

Creates a handle of an empty image. You don’t need to call this function before calling

FSDK_LoadImageFromXXXX since these functions already create the HImage handle.

Should be called before using the FSDK_CopyImage, FSDK_ResizeImage,

FSDK_RotateImage, FSDK_RotateImageCenter, FSDK_RotateImage90,

FSDK_MirrorImage, FSDK_CopyRect, FSDK_CopyRectReplicateBorder functions to create

the handle of the destination image.
C++ Syntax:

int FSDK_CreateEmptyImage(HImage* Image);

Delphi Syntax:

function FSDK_CreateEmptyImage (Image: PHImage): integer;

C# Syntax:

int FSDK.CreateEmptyImage(refint Image);

VB Syntax:

Function FSDKVB_CreateEmptyImage(ByRef Image As Long) As Long

Java and Android Syntax:

int FSDK.CreateEmptyImage(HImage Image);

Parameters:

Image – pointer to HImage for creating the image handle.

Return Value:

Returns FSDKE_OK if successful.

FSDK_LoadImageFromFile Function

Loads the image from a file and provides the internal handle of this image.

C++ Syntax:

int FSDK_LoadImageFromFile(HImage* Image, char* FileName);

Delphi Syntax:

function FSDK_LoadImageFromFile(Image: PHImage; FileName:

PAnsiChar): integer;

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

25

C# Syntax:

int FSDK.LoadImageFromFile(ref int Image, string FileName)

VB Syntax:

Function FSDKVB_LoadImageFromFile(ByRef Image As Long, ByVal

FileName As String) As Long

Java and Android Syntax:

int FSDK.LoadImageFromFile(HImage Image, String FileName);

CImage Syntax:

int FSDK.CImage(String FileName);

Parameters:

Image – pointer to HImage for receiving the loaded image handle.

FileName – filename of the image to be loaded. FaceSDK supports the JPG, PNG and BMP

file formats.

Return Value:

Returns FSDKE_OK if successful.

FSDK_LoadImageFromFileW Function

Loads the image from a file path in the Unicode character set and provides the internal handle

of this image. The function is available only on Windows platforms.

C++ Syntax:

int FSDK_LoadImageFromFileW(HImage* Image, wchar_t* FileName);

Delphi Syntax:

function FSDK_LoadImageFromFileW(Image: PHImage; FileName:

PWideChar): integer;

C# Syntax:

int FSDK.LoadImageFromFileW(ref int Image, string FileName)

Java Syntax:

int FSDK.LoadImageFromFileW(HImage Image, String FileName);

Parameters:

Image – pointer to HImage for receiving the loaded image handle.

FileName – filename of the image to be loaded. FaceSDK supports the JPG, PNG and BMP

file formats.

Return Value:

Returns FSDKE_OK if successful.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

26

This function is not available in Visual Basic 6.0.

FSDK_SaveImageToFile Function

Saves an image to a file. When saving to .jpg files, you can set the quality of JPEG

compression using the FSDK_SetJpegCompressionQuality function.

C++ Syntax:

int FSDK_SaveImageToFile(HImage Image, char* FileName);

Delphi Syntax:

function FSDK_SaveImageToFile(Image: HImage; FileName:

PAnsiChar): integer;

C# Syntax:

int FSDK.SaveImageToFile(int Image, string FileName);

VB Syntax:

Function FSDKVB_SaveImageToFile(ByVal Image As Long, ByVal

FileName As String) As Long

Java and Android Syntax:

int FSDK.SaveImageToFile(HImage Image, String FileName);

CImage Syntax:

void FSDK.CImage.Save(string FileName);

Parameters:

Image – internal handle of an image to be saved.

FileName – name of file the image will be saved to. FaceSDK saves images in the BMP,

PNG or JPG file format. The format to use is recognized by the extension specified in the

FileName parameter.

Return Value:

Returns FSDKE_OK if successful.

Example

int img1;

FSDK_Initialize("");

FSDK_LoadImageFromFile(&img1, "test.bmp"); // load .bmp file

FSDK_SaveImageToFile(img1, "test.jpg"); // save as .jpg

FSDK_SaveImageToFileW Function

Saves an image to a file path in the Unicode character set. The function is available only on

Windows platforms. When saving to .jpg files, you can set the quality of the JPEG

compression using the FSDK_SetJpegCompressionQuality function.

C++ Syntax:

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

27

int FSDK_SaveImageToFileW(HImage Image, wchar_t* FileName);

Delphi Syntax:

function FSDK_SaveImageToFileW(Image: HImage; FileName:

PWideChar): integer;

C# Syntax:

int FSDK.SaveImageToFileW(int Image, string FileName);

Java Syntax:

int FSDK.SaveImageToFileW(HImage Image, String FileName);

Parameters:

Image – internal handle of an image to be saved.

FileName – name of file the image will be saved to. FaceSDK saves images in the BMP,

PNG or JPG file format. The format to use is recognized by the extension specified in the

FileName parameter.

Return Value:

Returns FSDKE_OK if successful.

The function is not available in Visual Basic 6.0

FSDK_LoadImageFromBuffer Function

Loads an image from a buffer and provides the internal handle of this image. The function

suggests that the image data is organized in a top-to-bottom order, and the distance between

adjacent rows is ScanLine bytes (for example, in the 24-bit image, the ScanLine value might

be 3*Width bytes if there is no spacing between adjacent rows). The following image modes

are supported:

Mode name Meaning

FSDK_IMAGE_GRAYSCALE_8BIT 8-bit grayscale image

FSDK_IMAGE_COLOR_24BIT 24-bit color image (R, G, B order)

FSDK_IMAGE_COLOR_32BIT
32-bit color image with alpha channel (R, G, B, A

order)

C++ Syntax:

int FSDK_LoadImageFromBuffer(HImage* Image, unsigned char*

Buffer, int Width, int Height, int ScanLine, FSDK_IMAGEMODE

ImageMode);

Delphi Syntax:

function FSDK_LoadImageFromBuffer(Image: PHImage; var Buffer;

Width, Height: integer; ScanLine: integer; ImageMode:

FSDK_IMAGEMODE): integer;

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

28

C# Syntax:

int FSDK.LoadImageFromBuffer(ref int Image, byte[] Buffer, int

Width, int Height, int ScanLine, FSDK_IMAGEMODEImageMode);

VB Syntax:

Function FSDKVB_LoadImageFromBuffer(ByRef Image As Long, ByRef

Buffer As Byte, ByVal Width As Long, ByVal Height As Long,

ByVal ScanLine As Long, ByVal ImageMode As FSDK_IMAGEMODE) As

Long

Android Syntax:

int FSDK.LoadImageFromBuffer(HImage Image, byte Buffer[], int

Width, int Height, int ScanLine, FSDK_IMAGEMODE ImageMode);

Java Syntax:

int FSDK.LoadImageFromBuffer(HImage Image, byte Buffer[], int

Width, int Height, int ScanLine, int ImageMode);

Parameters:

Image – pointer to HImage for receiving the loaded image handle.

Buffer – pointer to buffer containing image data.

Width – width of an image in pixels.

Height – height of an image in pixels.

ScanLine – distance between adjacent rows in bytes.

ImageMode – mode of an image.

Return Value:

Returns FSDKE_OK if successful.

FSDK_LoadImageFromJpegBuffer Function

Loads an image from a buffer containing JPEG data, and provides the handle of this image.

C++ Syntax:

int FSDK_LoadImageFromJpegBuffer (HImage* Image, unsigned

char* Buffer, unsigned int BufferLength);

Delphi Syntax:

function FSDK_LoadImageFromJpegBuffer (Image: PHImage; var

Buffer; BufferLength: integer): integer;

VB Syntax:

Function FSDKVB_LoadImageFromJpegBuffer (ByRef Image As Long,

ByRef Buffer As Byte, ByVal BufferLength As Long) As Long

Android Syntax:

int FSDK.LoadImageFromJpegBuffer(HImage Image, byte Buffer[],

int BufferLength);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

29

Parameters:

Image – pointer to HImage for receiving the loaded image handle.

Buffer – pointer to the buffer containing the image data in JPEG format (usually loaded

from a JPEG file).

BufferLength – size of buffer in bytes.

Return Value:

Returns FSDKE_OK if successful.

This function is not available in .NET and Java.

FSDK_LoadImageFromPngBuffer Function

Loads an image from a buffer containing PNG data and provides the handle of this image.

 C++ Syntax:

int FSDK_LoadImageFromPngBuffer (HImage* Image, unsigned char*

Buffer, unsigned int BufferLength);

Delphi Syntax:

function FSDK_LoadImageFromPngBuffer (Image: PHImage; var

Buffer; BufferLength: integer): integer;

VB Syntax:

Function FSDKVB_LoadImageFromPngBuffer (ByRef Image As Long,

ByRef Buffer As Byte, ByVal BufferLength As Long) As Long

Android Syntax:

int FSDK.LoadImageFromPngBuffer(HImage Image, byte Buffer[],

int BufferLength);

Parameters:

Image – pointer to HImage for receiving the loaded image handle.

Buffer – pointer to the buffer containing the image data in PNG format (usually loaded

from a PNG file).

BufferLength – size of buffer in bytes.

Return Value:

Returns FSDKE_OK if successful.

The function is not available in .NET and Java.

FSDK_GetImageBufferSize Function

Returns the size of the buffer required to store an image.

C++ Syntax:

int FSDK_GetImageBufferSize(HImage Image, int * BufSize,

FSDK_IMAGEMODE ImageMode);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

30

Delphi Syntax:

function FSDK_GetImageBufferSize(Image: HImage; BufSize:

PInteger; ImageMode: FSDK_IMAGEMODE): integer;

C# Syntax:

int FSDK.GetImageBufferSize(intImage, ref int BufSize,

FSDK_IMAGEMODEImageMode);

VB Syntax:

Function FSDKVB_GetImageBufferSize(ByVal Image As Long, ByRef

BufSize As Long, ByVal ImageMode As FSDK_IMAGEMODE) As Long

Android Syntax:

int FSDK.GetImageBufferSize(HImage Image, int BufSize[],

FSDK_IMAGEMODE ImageMode);

Java Syntax:

int FSDK.GetImageBufferSize(HImage Image, int BufSize[],

intImageMode);

Parameters:

Image – internal handle of an image.

BufSize – pointer to an integer variable to store the calculated buffer size.

ImageMode – desired image mode of a buffer.

Return Value:

Returns FSDKE_OK if successful.

FSDK_SaveImageToBuffer Function

Saves an image to a buffer in the desired image mode. Refer to the

FSDK_LoadImageFromBuffer function description to read more about image modes.

 C++ Syntax:

int FSDK_SaveImageToBuffer(HImage Image, unsigned char*

Buffer, FSDK_IMAGEMODE ImageMode);

Delphi Syntax:

function FSDK_SaveImageToBuffer(Image: HImage; var Buffer;

ImageMode: FSDK_IMAGEMODE): integer;

C# Syntax:

int FSDK.SaveImageToBuffer(intImage, out byte[]Buffer,

FSDK_IMAGEMODEImageMode);

VB Syntax:

Function FSDKVB_SaveImageToBuffer(ByVal Image As Long, ByRef

Buffer As Byte, ByVal ImageMode As FSDK_IMAGEMODE) As Long

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

31

Android Syntax:

int FSDK.SaveImageToBuffer(HImage Image, byte Buffer[],

FSDK_IMAGEMODE ImageMode);

Java Syntax:

int FSDK.SaveImageToBuffer(HImage Image, byte Buffer[],

intImageMode);

Parameters:

Image – internal handle of an image to be saved.

Buffer – pointer to the buffer containing the image data.

ImageMode – desired mode an image will be saved in.

Return Value:

Returns FSDKE_OK if successful.

FSDK_LoadImageFromHBitmap Function

Loads the image from an HBITMAP handle and provides the internal handle of this image.

C++ Syntax:

int FSDK_LoadImageFromHBitmap(HImage* Image, HBITMAP*

BitmapHandle);

Delphi Syntax:

function FSDK_LoadImageFromHBitmap(Image: PHImage;

BitmapHandle: HBitmap): integer;

C# Syntax:

int FSDK.LoadImageFromHBitmap(ref int Image, IntPtr

BitmapHandle);

VB Syntax:

Function FSDKVB_LoadImageFromHBitmap(ByRef Image As Long,

ByVal BitmapHandle As Integer) As Long

CImage Syntax:

FSDK.CImage(IntPtr BitmapHandle);

Parameters:

Image – pointer to HImage for receiving the loaded image handle.

BitmapHandle – handle of the image to be loaded.

Return Value:

Returns FSDKE_OK if successful.

FSDK_SaveImageToHBitmap Function

Creates an HBITMAP handle containing the image.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

32

C++ Syntax:

int FSDK_SaveImageToHBitmap(HImage Image, HBITMAP*

BitmapHandle);

Delphi Syntax:

function FSDK_SaveImageToHBitmap(Image: HImage; BitmapHandle:

PHBitmap): integer;

C# Syntax:

int FSDK.SaveImageToHBitmap(int Image, ref IntPtr

BitmapHandle);

VB Syntax:

Function FSDKVB_SaveImageToHBitmap(ByVal Image As Long, ByRef

BitmapHandle As Integer) As Long

CImage Syntax:

IntPtr FSDK.CImage.GetHbitmap();

Parameters:

Image – internal handle of the image to be saved to HBITMAP.

BitmapHandle – pointer to HBITMAP the created HBITMAP handle will be saved to.

Return Value:

Returns FSDKE_OK if successful.

FSDK.LoadImageFromCLRImage Function

Loads the image from the System.Drawing.Image object and provides the internal handle of

this image.

C# Syntax:

int FSDK.LoadImageFromCLRImage(ref int Image,

System.Drawing.Image ImageObject);

CImage Syntax:

FSDK.CImage(System.Drawing.Image ImageObject);

Parameters:

Image – reference to HImage for receiving the loaded image handle.

ImageObject – object of the image to be loaded.

Return Value:

Returns FSDKE_OK if successful.

FSDK.SaveImageToCLRImage Function

Creates a System.Drawing.Image object containing the image.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

33

C# Syntax:

int FSDK.SaveImageToCLRImage(int Image, ref

System.Drawing.Image ImageObject);

CImage Syntax:

System.Drawing.Image FSDK.CImage.ToCLRImage();

Parameters:

Image – internal handle of the image to be saved to System.Drawing.Image.

ImageObject– reference to System.Drawing.Image object the image will be saved to.

Return Value:

Returns FSDKE_OK if successful.

FSDK.LoadImageFromAWTImage Function

Loads the image from the java.awt.Image object and provides the internal handle of this

image.

Java Syntax:

int FSDK.LoadImageFromAWTImage(HImage Image, java.awt.Image

SourceImage, int ImageMode);

Parameters:

Image – HImage for receiving the loaded image.

SourceImage – java.awt.Image object of the image to be loaded.

ImageMode - mode of an image. (See FSDK_LoadImageFromBuffer for more

information about image modes.)

Return Value:

Returns FSDKE_OK if successful.

FSDK.SaveImageToAWTImage Function

Creates a java.awt.Image object containing the image.

Java Syntax:

int FSDK.SaveImageToAWTImage(HImage Image, java.awt.Image

DestImage[], int ImageMode);

Parameters:

Image – internal handle of the image to be saved to System.Drawing.Image.

DestImage[] – java.awt.Image object the image will be saved to.

ImageMode - desired mode an image will be saved in.

Return Value:

Returns FSDKE_OK if successful.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

34

FSDK_SetJpegCompressionQuality

Sets the quality of the JPEG compression to use in the FSDK_SaveImageToFile function.

C++ Syntax:

int FSDK_SetJpegCompressionQuality(int Quality);

Delphi Syntax:

function FSDK_SetJpegCompressionQuality(Quality: integer):

integer;

C# Syntax:

int FSDK.SetJpegCompressionQuality(int Quality);

VB Syntax:

Function FSDKVB_SetJpegCompressionQuality(ByVal Quality As

Long) As Long

Java and Android Syntax:

int FSDK.SetJpegCompressionQuality(int Quality);

Parameters:

Quality – quality of JPEG compression. Varies from 0 to 100.

Return Value:

Returns FSDKE_OK if successful.

FSDK_GetImageWidth Function

Returns the width of an image.

C++ Syntax:

int FSDK_GetImageWidth(HImage SourceImage, int* Width);

Delphi Syntax:

function FSDK_GetImageWidth(SourceImage: HImage; Width:

PInteger): integer;

C# Syntax:

int FSDK.GetImageWidth(int SourceImage, ref int Width);

VB Syntax:

Function FSDKVB_GetImageWidth(ByVal SourceImage As Long, ByRef

Width As Long) As Long

Java and Android Syntax:

int FSDK.GetImageWidth(HImage SourceImage, int Width[]);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

35

CImage Syntax:

int FSDK.CImage.Width;

Parameters:

SourceImage – internal handle of an image.

Width – pointer to an integer variable to store the width of an image.

Return Value:

Returns FSDKE_OK if successful.

FSDK_GetImageHeight Function

Returns the height of an image.

C++ Syntax:

int FSDK_GetImageHeight(HImage SourceImage, int* Height);

Delphi Syntax:

function FSDK_GetImageHeight(SourceImage: HImage; Height:

PInteger): integer;

C# Syntax:

int FSDK.GetImageHeight(int SourceImage, ref int Height);

VB Syntax:

Function FSDKVB_GetImageHeight(ByVal SourceImage As Long,

ByRef Height As Long) As Long

Java and Android Syntax:

int FSDK.GetImageHeight(HImage SourceImage, int Height[]);

CImage Syntax:

int FSDK.CImage.Height;

Parameters:

SourceImage – internal handle of an image.

Height – pointer to an integer variable to store the height of an image.

Return Value:

Returns FSDKE_OK if successful.

FSDK_CopyImage Function

Creates a copy of an image. The handle of the destination image should be created with

the FSDK_CreateEmptyImage function.

C++ Syntax:

int FSDK_CopyImage(HImage SourceImage, HImage DestImage);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

36

Delphi Syntax:

function FSDK_CopyImage(SourceImage: HImage; DestImage:

HImage): integer;

C# Syntax:

int FSDK.CopyImage(int SourceImage, int DestImage);

VB Syntax:

Function FSDKVB_CopyImage(ByVal SourceImage As Long, ByVal

DestImage As Long) As Long

Java and Android Syntax:

int FSDK.CopyImage(HImage SourceImage, HImage DestImage);

CImage Syntax:

FSDK.CImage FSDK.CImage.Copy();

Parameters:

SourceImage – handle of an image to be copied.

DestImage – handle of the destination image.

Return Value:

Returns FSDKE_OK if successful.

FSDK_ResizeImage Function

Changes the size of an image. The handle of the destination image should be created with

the FSDK_CreateEmptyImage function.

C++ Syntax:

int FSDK_ResizeImage(HImage SourceImage, double ratio, HImage

DestImage);

Delphi Syntax:

function FSDK_ResizeImage (SourceImage: HImage; ratio: double;

DestImage: HImage): integer;

C# Syntax:

int FSDK.ResizeImage(int SourceImage, double ratio, int

DestImage);

VB Syntax:

Function FSDKVB_ResizeImage (ByVal SourceImage As Long, ByVal

ratio As Double, ByVal DestImage As Long) As Long

Java and Android Syntax:

int FSDK.ResizeImage(HImage SourceImage, double ratio, HImage

DestImage);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

37

CImage Syntax:

FSDK.CImage FSDK.CImage.Resize(double ratio);

Parameters:

SourceImage – handle of an image to be resized.

Ratio – factor by which the x and y dimensions of the source image are changed. A factor

value greater than 1 corresponds to increasing the image size.

DestImage – handle of the destination image.

Return Value:

Returns FSDKE_OK if successful.

FSDK_RotateImage Function

Rotates an image around its center. The handle of the destination image should be created

with the FSDK_CreateEmptyImage function.

C++ Syntax:

int FSDK_RotateImage(HImage SourceImage, double angle, HImage

DestImage);

Delphi Syntax:

function FSDK_RotateImage (SourceImage: HImage; angle: double;

DestImage: HImage): integer;

C# Syntax:

int FSDK.RotateImage (int SourceImage, double angle, int

DestImage);

VB Syntax:

Function FSDKVB_RotateImage (ByVal SourceImage As Long, ByVal

angle As Double, ByVal DestImage As Long) As Long

Java and Android Syntax:

int FSDK.RotateImage(HImage SourceImage, double angle, HImage

DestImage);

CImage Syntax:

FSDK.CImage FSDK.CImage.Rotate(double angle);

Parameters:

SourceImage – handle of an image to be rotated.

Angle – rotation angle in degrees.

DestImage – handle of the destination image.

Return Value:

Returns FSDKE_OK if successful.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

38

FSDK_RotateImageCenter Function

Rotates an image around an arbitrary center. The handle of the destination image should be

created with the FSDK_CreateEmptyImage function.

C++ Syntax:

int FSDK_RotateImageCenter(HImage SourceImage, double angle,

double xCenter, double yCenter, HImage DestImage);

Delphi Syntax:

function FSDK_RotateImageCenter (SourceImage: HImage; angle:

double; xCenter: double; yCenter: double; DestImage:

HImage;): integer;

C# Syntax:

int FSDK.RotateImageCenter (int SourceImage, double angle,

double xCenter, double yCenter, int DestImage);

VB Syntax:

Function FSDKVB_RotateImageCenter (ByVal SourceImage As Long,

ByVal angle As Double, ByVal xCenter As Double, ByVal yCenter

As Double, ByVal DestImage As Long) As Long

Java and Android Syntax:

int FSDK.RotateImageCenter(HImage SourceImage, double angle,

double xCenter, double yCenter, HImage DestImage);

Parameters:

SourceImage – handle of an image to be rotated.

Angle – rotation angle in degrees.

xCenter – the X coordinate of the rotation center.

yCenter – the Y coordinate of the rotation center.

DestImage – handle of the destination image.

Return Value:

Returns FSDKE_OK if successful.

FSDK_RotateImage90 Function

Rotates the image by 90 or 180 degrees clockwise or counter-clockwise. The handle of the

destination image should be created with the FSDK_CreateEmptyImage function.

C++ Syntax:

int FSDK_RotateImage90(HImage SourceImage, int Multiplier,

HImage DestImage);

Delphi Syntax:

function FSDK_RotateImage90(SourceImage: HImage; Multiplier:

integer;DestImage: HImage): integer;

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

39

C# Syntax:

int FSDK.RotateImage90(int SourceImage, int Multiplier, int

DestImage);

VB Syntax:

Function FSDKVB_RotateImage90(ByVal SourceImage As Long, ByVal

Multiplier As Long, ByVal DestImage As Long) As Long

Java and Android Syntax:

int FSDK.RotateImage90(HImage SourceImage, int Multiplier,

HImage DestImage);

CImage Syntax:

FSDK.CImage FSDK.CImage.Rotate90(int Multiplier);

Parameters:

SourceImage – handle of an image to be rotated.

Multiplier – an integer multiplier of 90 degrees defining the rotation angle. Specify 1 for

90 degrees clockwise, 2 for 180 degrees clockwise; specify -1 for 90 degrees counter-

clockwise.

DestImage – handle of the destination image.

Return Value:

Returns FSDKE_OK if successful.

FSDK_CopyRect Function

Creates a copy of a rectangular area of an image. The handle of the destination image should

be created with the FSDK_CreateEmptyImage function. If some apex of a rectangle is located

outside the source image, rectangular areas that do not contain the source image will be black.

C++ Syntax:

int FSDK_CopyRect(HImage SourceImage, int x1, int y1, int x2,

int y2, HImage DestImage);

Delphi Syntax:

function FSDK_CopyRect (SourceImage: HImage; x1, y1, x2, y2:

integer; DestImage: HImage): integer;

C# Syntax:

int FSDK.CopyRect (int SourceImage, int x1, int y1, int x2,

int y2, int DestImage);

VB Syntax:

Function FSDKVB_CopyRect (ByVal SourceImage As Long, ByVal x1

As Long, ByVal y1 As Long, ByVal x2 As Long, ByVal y2 As Long,

ByVal DestImage As Long) As Long

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

40

Java and Android Syntax:

int FSDK.CopyRect(HImage SourceImage, int x1, int y1, int x2,

int y2, HImage DestImage);

CImage Syntax:

FSDK.CImage FSDK.CImage.CopyRect(int x1, int y1, int x2, int

y2);

Parameters:

SourceImage – handle of an image to copy the rectangle from.

x1 – the X coordinate of the bottom left corner of the copied rectangle.

y1 – the Y coordinate of the bottom left corner of the copied rectangle.

x2 – the X coordinate of the top right corner of the copied rectangle.

y2 – the Y coordinate of the top right corner of the copied rectangle.

DestImage – handle of the destination image.

Return Value:

Returns FSDKE_OK if successful.

FSDK_CopyRectReplicateBorder Function

Creates a copy of a rectangular area of an image and adds replicated border pixels. The handle

of the destination image should be created with the FSDK_CreateEmptyImage function.

This function copies the source image to the destination image and fills pixels ("border")

outside the copied area in the destination image with the values of the nearest source image

pixels.

C++ Syntax:

int FSDK_CopyRectReplicateBorder(HImage SourceImage, int x1,

int y1, int x2, int y2, HImage DestImage);

Delphi Syntax:

function FSDK_CopyRectReplicateBorder(SourceImage: HImage; x1,

y1, x2, y2: integer; DestImage: HImage): integer;

C# Syntax:

int FSDK.CopyRectReplicateBorder(int SourceImage, int x1, int

y1, int x2, int y2, int DestImage);

VB Syntax:

Function FSDKVB_CopyRectReplicateBorder(ByVal SourceImage As

Long, ByVal x1 As Long, ByVal y1 As Long, ByVal x2 As Long,

ByVal y2 As Long, ByVal DestImage As Long) As Long

Java and Android Syntax:

int FSDK.CopyRectReplicateBorder(HImage SourceImage, int x1,

int y1, int x2, int y2, HImage DestImage);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

41

CImage Syntax:

FSDK.CImage FSDK.CImage.CopyRectReplicateBorder(int x1, int

y1, int x2, int y2);

Parameters:

SourceImage – handle of an image to copy the rectangle from.

x1 – the X coordinate of the left bottom corner of the copied rectangle.

y1 – the Y coordinate of the left bottom corner of the copied rectangle.

x2 – the X coordinate of the right top corner of the copied rectangle.

y2 – the Y coordinate of the right top corner of the copied rectangle.

DestImage –handle of the destination image.

Return Value:

Returns FSDKE_OK if successful.

FSDK_MirrorImage Function

Mirrors an image. The function can mirror images horizontally or vertically.

C++ Syntax:

int FSDK_MirrorImage(HImage Image, bool

UseVerticalMirroringInsteadOfHorizontal);

Delphi Syntax:

function FSDK_MirrorImage(Image: HImage;

UseVerticalMirroringInsteadOfHorizontal: boolean): integer;

C# Syntax:

int FSDK.MirrorImage(int Image, bool

UseVerticalMirroringInsteadOfHorizontal);

VB Syntax:

Function FSDKVB_MirrorImage(ByVal Image As Long, ByVal

UseVerticalMirroringInsteadOfHorizontal As Boolean) As Long

Java and Android Syntax:

int FSDK.MirrorImage(HImage Image, boolean

UseVerticalMirroringInsteadOfHorizontal);

CImage Syntax:

FSDK.CImage FSDK.CImage.MirrorVertical();

FSDK.CImage FSDK.CImage.MirrorHorizontal();

Parameters:

Image – handle of the image to be mirrored.

UseVerticalMirroringInsteadOfHorizontal– sets the mirror direction.

TRUE: left-to-right swap;

FALSE: top-to-bottom swap;

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

42

Return Value:

Returns FSDKE_OK if successful.

FSDK_FreeImage Function

Frees the internal representation of an image.

C++ Syntax:

int FSDK_FreeImage(HImage Image);

Delphi Syntax:

function FSDK_FreeImage(Image: HImage): integer;

C# Syntax:

int FSDK.FreeImage(int Image);

VB Syntax:

Function FSDKVB_FreeImage(ByVal Image As Long) As Long

Java and Android Syntax:

int FSDK.FreeImage(HImage Image);

Parameters:

Image – handle of the image to be freed.

Return Value:

Returns FSDKE_OK if successful.

Face Detection
You can use the FSDK_DetectFace function to detect a frontal face in an image. The function

returns the position of the face in the image. The performance and reliability of face detection

is controlled by the FSDK_SetFaceDetectionParametersand

FSDK_SetFaceDetectionThreshold functions.

Typical parameters for face detection are:

• To detect faces from a webcam in real time, call:

FSDK_SetFaceDetectionParameters(false, false, 100);

• To reliably detect faces in digital camera photos, call

FSDK_SetFaceDetectionParameters(true, false, 500);

Face Detection Models

Luxand FaceSDK allows you to switch the internal models used for face detection. You may

use the switching to load improved face detection models when made available by Luxand or

to switch to a thermal face detection model.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

43

Use the FSDK_SetParameter or FSDK_SetParameters function to load a face detection model

from a file. When using Tracker API, use the FSDK_SetTrackerParameter or

FSDK_SetTrackerMultipleParameters function instead. Set the FaceDetectionModel

parameter to specify the file to load a model from. Be sure to check the return value of

FSDK_SetParameter or FSDK_SetParameters to confirm the file loaded correctly.

To load a thermal face detection model, set FaceDetectionModel to thermal.bin. Confirm

this file is available in the current directory and, if not, specify the full path to the file.

To switch back to the default model (i.e., the model for visual face detection), set

FaceDetectionModel to default. See the FaceSDK Parameters section for more

information.

Face Detection on Thermal Images

Luxand FaceSDK allows for the detection of faces on 8-bit grayscale thermal images. You

typically receive such images from a thermal camera, with each pixel representing

temperature.

To pass the thermal image to FaceSDK, you may need to convert the temperature values of

the image (which may be float or 14-bit values, for example) into 8-bit values (from 0 to 255).

The absolute temperature itself is not taken into account by FaceSDK when detecting faces,

only the relative difference in temperature between facial features and the background.

Typically, you may normalize an image so that coldest pixel is represented by 0 and the

hottest by 255. However, if you have very hot or very cold images in the background, this

may lead to faces having a low contrast. Therefore, it is recommended to normalize the image

so that 0 would represent the temperature of about 20 degrees Celsius and 255 the

temperature of about 40 degrees Celsius (the usual range of temperatures for human faces).

After this normalization, any pixels colder than 20 degrees Celsius will have the value 0, and

any pixels hotter than 40 degrees Celsius will have the value of 255.

If your thermal camera returns a noisy picture, you may get lower detection rates. In such

cases, it is recommended to de-noise the image with a median or a Gaussian filter before

passing it to FaceSDK. More information can be found on the links below:

https://en.wikipedia.org/wiki/Median_filter

https://en.wikipedia.org/wiki/Gaussian_blur

Try varying the face detection threshold if you get a high number of false positives or low

detection rates on your camera.

FaceSDK itself does not communicate with thermal cameras except when the camera is

available as a standard Windows web camera. When working with a thermal camera, you

need to use the camera manufacturer’s API to receive images. To pass thermal images to

FaceSDK, you may use the FSDK_LoadImageFromBuffer function after converting the

images to an 8-bit format (and possibly normalizing the pixel values, as described above).

To detect faces on thermal images, follow these steps:

1. Load a face detection model by setting the FaceDetectionModel with the

FSDK_SetParameter or FSDK_SetParameters function. If using Tracker API, use the

https://en.wikipedia.org/wiki/Median_filter
https://en.wikipedia.org/wiki/Gaussian_blur

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

44

FSDK_SetTrackerParameter or FSDK_SetTrackerMultipleParameters function

instead.

2. Check the return value of the above functions for error to be sure the thermal model

was loaded.

3. Set the TrimOutOfScreenFaces and

TrimFacesWithUncertainFacialFeatures parameters to False using the

same functions.

4. Pass thermal images to FSDK_DetectFaces, FSDK_DetectMultipleFaces or

FSDK_FeedFrame (when using Tracker API).

Example:

FSDK_SetParameters("FaceDetectionModel=thermal.bin;TrimOutOfSc

reenFaces=false;TrimFacesWithUncertainFacialFeatures=false",

&err);

Refer to the Thermal sample application to see how faces on thermal images can be detected.

Data types

Luxand FaceSDK introduces the TFacePosition data type that stores the information about the

position of the face. The xc and yc fields specifies the X and Y coordinates of the center of

the face, w specifies the width of the face, and angle specifies the in-plane rotation angle of

the face in degrees.

C++ Declaration:

typedef struct {

 int xc, yc, w;

 int padding;

 double angle;

} TFacePosition;

C# Declaration:

public struct TFacePosition {

public int xc, yc, w;

 public double angle;

}

Delphi Declaration:

TFacePosition = record

 xc, yc, w: integer;

 padding: integer;

 angle: double;

end;

PFacePosition = ^TFacePosition;

VB Declaration:

Type TFacePosition

 xc As Long

 yc As Long

 w As Long

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

45

 padding as Long

 angle As Double

End Type

Java Declaration:

The class TFacePosition contains the following fields:

public int xc, yc, w;

public double angle;

The class TFaces encapsulates an array of TFacePosition classses. It has the following

properties:

public TFacePosition faces[];

int maxFaces;

FSDK_DetectFace Function

Detects a frontal face in an image and stores information about the face position into the

TFacePosition structure.

C++ Syntax:

int FSDK_DetectFace(HImage Image, TFacePosition*

FacePosition);

Delphi Syntax:

function FSDK_DetectFace(Image: HImage; FacePosition:

PFacePosition): integer;

C# Syntax:

int FSDK.DetectFace(int Image, ref FSDK.TFacePosition

FacePosition);

VB Syntax:

Function FSDKVB_DetectFace(ByVal Image As Long, ByRef

FacePosition As TFacePosition) As Long

Java Syntax:

int FSDK.DetectFace(HImage Image, TFacePosition.ByReference

FacePosition);

Android Syntax:

int FSDK.DetectFace(HImage Image, TFacePosition FacePosition);

CImage Syntax:

FSDK.TFacePosition FSDK.CImage.DetectFace();

Parameters:

Image – handle of the image to detect the face in.

FacePosition – pointer to the TFacePosition structure to store information about the face

position.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

46

Return Value:

Returns FSDKE_OK if successful. If a face is not found, the function returns the

FSDKE_FACE_NOT_FOUND code. If the input image is too small (less than 20x20 pixels),

the functions returns FSDKE_IMAGE_TOO_SMALL.

Example

int img1;

TFacePosition FacePosition;

FSDK_Initialize("");

FSDK_LoadImageFromFile(&img1, "test.jpg");

FSDK_DetectFace(img1, &FacePosition);

printf("face position: %d %d %d", FacePosition.xc,

FacePosition.yc, FacePosition.angle);

FSDK_DetectMultipleFaces Function

Detects multiple faces in an image.

C++ Syntax:

int FSDK_DetectMultipleFaces(HImage Image, int* DetectedCount,

TFacePosition* FaceArray, int MaxSizeInBytes);

Delphi Syntax:

function FSDK_DetectMultipleFaces(Image: HImage;

DetectedCount: PInteger; FaceArray: PFacePositionArray;

MaxSizeInBytes: integer): integer;

C# Syntax:

int FSDK.DetectMultipleFaces(int Image, ref int DetectedCount,

out FSDK.TFacePosition[] FaceArray, int MaxSizeInBytes);

VB Syntax:

Function FSDKVB_DetectMultipleFaces(ByVal Image As Long, ByRef

DetectedCount As Long, ByRef FaceArray As TFacePosition, ByVal

MaxSizeInBytes As Long) As Long

Java and Android Syntax:

int FSDK.DetectMultipleFaces(HImage Image, TFaces FaceArray);

CImage Syntax:

FSDK.TFacePosition[] FSDK.CImage.DetectMultipleFaces();

Parameters:

Image – handle of the image to detect faces in.

DetectedCount – count of the faces found in the image.

FaceArray – pointer to the array of TFacePosition structure to store the information about

the detected faces.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

47

MaxSizeInBytes – size of the FaceArray buffer in bytes. The function will not store

more than MaxSize bytes in the buffer.

Return Value:

Returns FSDKE_OK if successful. If no faces are found, the function returns the

FSDKE_FACE_NOT_FOUND code. If the input image is too small (less than 20x20 pixels),

the functions returns FSDKE_IMAGE_TOO_SMALL.

Example

int img1;

int DetectedCount;

TFacePosition FaceArray[50];

FSDK_Initialize("");

FSDK_LoadImageFromFile(&img1, "test.jpg");

FSDK_DetectMultipleFaces(img1, &DetectedCount , FaceArray,

sizeof(FaceArray));

for (i = 0; i < DetectedCount; i++) {

printf("face position: %d %d %d\n", FaceArray[i].xc,

FaceArray[i].yc, FaceArray[i].angle);

}

FSDK_SetFaceDetectionParameters Function

Allows setting a number of face detection parameters to control the performance and

reliability of face detector.

The function allows configuring the following parameters: HandleArbitraryRotations,

DetermineFaceRotationAngle and InternalResizeWidth.

HandleArbitraryRotations, DetermineFaceRotationAngle can be TRUE or FALSE, while

InternalResizeWidth is an integer.

Other face detection parameters that can also be set using the FSDK_SetParameter or

FSDK_SetParameters function.

C++ Syntax:

int FSDK_SetFaceDetectionParameters(bool

HandleArbitraryRotations, bool DetermineFaceRotationAngle, int

InternalResizeWidth);

Delphi Syntax:

function

FSDK_SetFaceDetectionParameters(HandleArbitraryRotations:

boolean; DetermineFaceRotationAngle: boolean;

InternalResizeWidth: integer): integer;

C# Syntax:

int FSDK.SetFaceDetectionParameters(bool

HandleArbitraryRotations, bool DetermineFaceRotationAngle, int

InternalResizeWidth);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

48

VB Syntax:

Function FSDKVB_SetFaceDetectionParameters(ByVal

HandleArbitraryRotations As Boolean, ByVal

DetermineFaceRotationAngle As Boolean, ByVal

InternalResizeWidth As Long) As Long

Java and Android Syntax:

int FSDK.SetFaceDetectionParameters(boolean

HandleArbitraryRotations, boolean DetermineFaceRotationAngle,

int InternalResizeWidth);

Parameters:

HandleArbitraryRotations– extends default in-plane face rotation angle from -15..15

degrees to -30..30 degrees.

TRUE: extended in-plane rotation support is enabled at the cost of detection speed (3 times

performance hit).

FALSE: default fast detection -15..15 degrees.

DetermineFaceRotationAngle– enables or disables the detection of in-plane face

rotation angle.

TRUE: detects in-plane rotation angle when detecting faces. The angle is recorded into the

Angle field of the TFacePosition structure (TFacePosition is a structure returned by

FSDK_DetectFace and FSDK_DetectMultipleFaces).

FALSE: disables the detection of rotation angle.

Note: Enabling face rotation angle detection slows down the detection process slightly. Set

this parameter to TRUE if you are planning to call FSDK_DetectFacialFeatures or

FSDK_DetectFacialFeaturesInRegion.

InternalResizeWidth – controls the detection speed by setting the size of the image

the detection functions will work with. Choose higher value to increase detection quality, or

lower value to improve the performance.

Note: By default, all images are internally resized to the width of 384 pixels. 384 pixels are a

reasonable compromise between performance and detection quality. While large images are

down-sized, the smaller ones are up-sized to the specified Resize Width in order to maintain

constant detection speed.

Choosing the right value for InternalResizeWidth

Choosing the correct value for the InternalResizeWidth parameter is essential for the correct

operation of face detection functions of the SDK. The face detection functions can only detect

faces as small as 20x20 pixels. Even if the source image is a large 1000x1000 dots one, the

face on that image can be as small as 100x100 pixels. If you set InternalResizeWidth to 200,

then the source image will be resized to 200x200 pixels, thus the face will only occupy 20x20

pixels. This is still enough for the SDK functions to work. If, however, you set

InternalResizeWidth to 100, then the original image will become 100x100 pixels, and the face

on it will only occupy 10x10 dots, which is NOT enough for the SDK functions to work with.

Be extra careful when changing the default value of InternalResizeWidth. For example,

webcam images can be usually detected with InternalResizeWidth set to 100, while images

from multi-megapixel digital cameras require values of at least 384 or 512 pixels to work

with.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

49

Return Value:

Returns FSDKE_OK if successful.

FSDK_SetFaceDetectionThreshold Function

Sets a threshold value for face detection. The default value is 5. The lowest possible value is

1.

The function allows adjusting the sensitivity of the detection. If the threshold value is set to a

higher value, the detector will only recognize faces with sharp, clearly defined details, thus

reducing the number of false positive detections. Setting the threshold lower allows detecting

more faces with less clearly defined features at the expense of increased number of false

positives.

C++ Syntax:

int FSDK_SetFaceDetectionThreshold(int Threshold);

Delphi Syntax:

function FSDK_SetFaceDetectionThreshold(Threshold: integer):

integer;

C# Syntax:

int FSDK.SetFaceDetectionThreshold(int Threshold);

VB Syntax:

Function FSDKVB_SetFaceDetectionThreshold(ByVal Threshold As

Long) As Long

Java and Android Syntax:

int FSDK.SetFaceDetectionThreshold(int Threshold);

Parameters:

Threshold – Threshold value.

Return Value:

Returns FSDKE_OK if successful.

Facial Feature Detection
FaceSDK provides the FSDK_DetectFacialFeatures function to detect facial features in an

image and the FSDK_DetectEyes function to detect just eye centers in an image. First, these

functions detect a frontal face in an image, and then detect its facial features or only eye

centers. The FSDK_DetectFacialFeaturesInRegion and FSDK_DetectEyesInRegion functions

do not perform the face detection step and detect facial features or eye centers in a region

returned by FSDK_DetectFace or FSDK_DetectMultipleFaces.

In the current version of Luxand FaceSDK the performance of FSDK_DetectEyes and

FSDK_DetectFacialFeatures is the same, so there is no advantage in calling

FSDK_DetectEyes instead of FSDK_DetectFacialFeatures.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

50

The facial features are stored in the FSDK_Features data structure. FSDK_Features is an

array data type containing FSDK_FACIAL_FEATURE_COUNT points. The list of facial

features recognized by FaceSDK is available in the Detected Facial Features chapter.

Eye centers are saved to FSDK_Features[0] and FSDK_Features[1]. The FSDK_DetectEyes

and FSDK_DetectEyesInRegion functions do not change other elements of the

FSDK_Features array.

C++ Declaration:

typedef struct { int x,y; } TPoint;

typedef TPoint FSDK_Features [FSDK_FACIAL_FEATURE_COUNT];

C# Declaration:

public struct TPoint {

public int x, y;

}

Delphi Declaration:

TPoint = record

 x, y: integer;

end;

FSDK_Features = array[0..FSDK_FACIAL_FEATURE_COUNT - 1] of

TPoint;

PFSDK_Features = ^FSDK_Features;

VB Declaration:

Type TPoint

 x As Long

 y As Long

End Type

Java and Android Declaration:

The class TPoint has the following properties:

 public int x, y;

The class FSDK_Features has the following property:

 public TPoint features[];

FSDK_DetectFacialFeatures Function

Detects a frontal face in an image and detects its facial features.

C++ Syntax:

int FSDK_DetectFacialFeatures(HImage Image, FSDK_Features*

FacialFeatures);

Delphi Syntax:

function FSDK_DetectFacialFeatures(Image: HImage;

FacialFeatures: PFSDK_Features): integer;

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

51

C# Syntax:

int FSDK.DetectFacialFeatures(int Image, out FSDK.TPoint[]

FacialFeatures);

VB Syntax:

Function FSDKVB_DetectFacialFeatures(ByVal Image As Long,

ByRef FacialFeatures As TPoint) As Long

Java Syntax:

int FSDK.DetectFacialFeatures(HImage Image,

FSDK_Features.ByReference FacialFeatures);

Android Syntax:

int FSDK.DetectFacialFeatures(HImage Image, FSDK_Features

FacialFeatures);

CImage Syntax:

FSDK.TPoint[] FSDK.CImage.DetectFacialFeatures();

Parameters:

Image– handle of the image facial features should be detected in.

FacialFeatures– pointer to the FSDK_Features array for receiving the detected facial

features.

Return Value:

Returns FSDKE_OK if successful.

Example

int img1;

FSDK_Features Features;

FSDK_Initialize("");

FSDK_LoadImageFromFile(&img1, "test.jpg");

FSDK_DetectFacialFeatures(img1, Features);

printf("Left eye location: (%d, %d)\n",

Features[FSDKP_LEFT_EYE].x, Features[FSDKP_LEFT_EYE].y);

printf("Right eye location: (%d, %d)\n",

Features[FSDKP_RIGHT_EYE].y, Features[FSDKP_RIGHT_EYE].y);

FSDK_DetectFacialFeaturesInRegion Function

Detects facial features in an image region returned by FSDK_DetectFace or

FSDK_DetectMultipleFaces. This function can be useful if an approximate face size is

known, or to detect facial features of a specific face returned by FSDK_DetectMultipleFaces.

C++ Syntax:

int FSDK_DetectFacialFeaturesInRegion(HImage Image,

TFacePosition* FacePosition, FSDK_Features* FacialFeatures);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

52

Delphi Syntax:

function FSDK_DetectFacialFeaturesInRegion(Image: HImage;

FacePosition: PFacePosition; FacialFeatures: PFSDK_Features):

integer;

C# Syntax:

int FSDK.DetectFacialFeaturesInRegion(int Image, ref

FSDK.TFacePosition FacePosition, out FSDK.TPoint[]

FacialFeatures);

VB Syntax:

Function FSDKVB_DetectFacialFeaturesInRegion(ByVal Image As

Long, ByRef FacePosition As TFacePosition, ByRef

FacialFeatures As TPoint) As Long

Java Syntax:

int FSDK.DetectFacialFeaturesInRegion(HImage Image,

TFacePosition FacePosition, FSDK_Features.ByReference

FacialFeatures);

Android Syntax:

int FSDK.DetectFacialFeaturesInRegion(HImage Image,

TFacePosition FacePosition, FSDK_Features FacialFeatures);

C# Syntax:

FSDK.TPoint[] FSDK.CImage.DetectFacialFeaturesInRegion(ref

FSDK.TFacePosition FacePosition);

Parameters:

Image – handle of the image facial features should be detected in.

FacePosition – pointer to the face position structure.

FacialFeatures – pointer to the FSDK_Features array for receiving the detected facial

features.

Return Value:

Returns FSDKE_OK if successful.

Example

int i, DetectedCount, img1;

FSDK_Features Features;

TFacePosition FaceArray[50];

FSDK_Initialize("");

FSDK_LoadImageFromFile(&img1, "test.jpg");

FSDK_DetectMultipleFaces(img1, &DetectedCount , FaceArray,

sizeof(FaceArray));

for (i = 0; i < DetectedCount; i++) {

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

53

 FSDK_DetectFacialFeaturesInRegion(img1, FaceArray[i],

Features);

 printf("Left eye location: (%d, %d)\n",

Features[FSDKP_LEFT_EYE].x, Features[FSDKP_LEFT_EYE].y);

 printf("Right eye location: (%d, %d)\n",

Features[FSDKP_RIGHT_EYE].x, Features[FSDKP_RIGHT_EYE].y);

}

FSDK_DetectEyes Function

Detects a frontal face in an image and detects its eye centers.

C++ Syntax:

int FSDK_DetectEyes(HImage Image, FSDK_Features*

FacialFeatures);

Delphi Syntax:

function FSDK_DetectEyes(Image: HImage; FacialFeatures:

PFSDK_Features): integer;

C# Syntax:

int FSDK.DetectEyes(int Image, out FSDK.TPoint[]

FacialFeatures);

VB Syntax:

Function FSDKVB_DetectEyes(ByVal Image As Long, ByRef

FacialFeatures As TPoint) As Long

Java Syntax:

int FSDK.DetectEyes(HImage Image, FSDK_Features.ByReference

FacialFeatures);

Android Syntax:

int FSDK.DetectEyes(HImage Image, FSDK_Features

FacialFeatures);

CImage Syntax:

FSDK.TPoint[] FSDK.CImage.DetectEyes();

Parameters:

Image – handle of the image eye centers should be detected in.

FacialFeatures – pointer to the FSDK_Features array for receiving the detected eye

centers.

Return Value:

Returns FSDKE_OK if successful.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

54

FSDK_DetectEyesInRegion Function

Detects eye centers in an image region returned by FSDK_DetectFace or

FSDK_DetectMultipleFaces.

C++ Syntax:

int FSDK_DetectEyesInRegion(HImage Image, TFacePosition*

FacePosition, FSDK_Features* FacialFeatures);

Delphi Syntax:

function FSDK_DetectEyesInRegion(Image: HImage; FacePosition:

PFacePosition; FacialFeatures: PFSDK_Features): integer;

C# Syntax:

int FSDK.DetectEyesInRegion(int Image, ref FSDK.TFacePosition

FacePosition, out FSDK.TPoint[] FacialFeatures);

VB Syntax:

Function FSDKVB_DetectEyesInRegion(ByVal Image As Long, ByRef

FacePosition As TFacePosition, ByRef FacialFeatures As TPoint)

As Long

Java Syntax:

int FSDK.DetectEyesInRegion(HImage Image, TFacePosition

FacePosition, FSDK_Features.ByReference FacialFeatures);

Android Syntax:

int FSDK.DetectEyesInRegion(HImage Image, TFacePosition

FacePosition, FSDK_Features FacialFeatures);

CImage Syntax:

FSDK.TPoint[] FSDK.CImage.DetectEyesInRegion(ref

FSDK.TFacePosition FacePosition);

Parameters:

Image – handle of the image eye centers should be detected in.

FacePosition – pointer to the face position structure.

FacialFeatures – pointer to the FSDK_Features array for receiving the detected eye

centers.

Return Value:

Returns FSDKE_OK if successful.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

55

Detected Facial Features

Luxand FaceSDK detects 70 facial feature points. These facial feature points can be accessed

by their names in the FSDK_Features array.

Facial Feature Name Value

FSDKP_LEFT_EYE 0

FSDKP_RIGHT_EYE 1

FSDKP_LEFT_EYE_INNER_CORNER 24

FSDKP_LEFT_EYE_OUTER_CORNER 23

FSDKP_LEFT_EYE_LOWER_LINE1 38

FSDKP_LEFT_EYE_LOWER_LINE2 27

FSDKP_LEFT_EYE_LOWER_LINE3 37

FSDKP_LEFT_EYE_UPPER_LINE1 35

FSDKP_LEFT_EYE_UPPER_LINE2 28

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

56

FSDKP_LEFT_EYE_UPPER_LINE3 36

FSDKP_LEFT_EYE_LEFT_IRIS_CORNER 29

FSDKP_LEFT_EYE_RIGHT_IRIS_CORNER 30

FSDKP_RIGHT_EYE_INNER_CORNER 25

FSDKP_RIGHT_EYE_OUTER_CORNER 26

FSDKP_RIGHT_EYE_LOWER_LINE1 41

FSDKP_RIGHT_EYE_LOWER_LINE2 31

FSDKP_RIGHT_EYE_LOWER_LINE3 42

FSDKP_RIGHT_EYE_UPPER_LINE1 40

FSDKP_RIGHT_EYE_UPPER_LINE2 32

FSDKP_RIGHT_EYE_UPPER_LINE3 39

FSDKP_RIGHT_EYE_LEFT_IRIS_CORNER 33

FSDKP_RIGHT_EYE_RIGHT_IRIS_CORNER 34

FSDKP_LEFT_EYEBROW_INNER_CORNER 13

FSDKP_LEFT_EYEBROW_MIDDLE 16

FSDKP_LEFT_EYEBROW_MIDDLE_LEFT 18

FSDKP_LEFT_EYEBROW_MIDDLE_RIGHT 19

FSDKP_LEFT_EYEBROW_OUTER_CORNER 12

FSDKP_RIGHT_EYEBROW_INNER_CORNER 14

FSDKP_RIGHT_EYEBROW_MIDDLE 17

FSDKP_ RIGHT_EYEBROW_MIDDLE_LEFT 20

FSDKP_ RIGHT_EYEBROW_MIDDLE_RIGHT 21

FSDKP_RIGHT_EYEBROW_OUTER_CORNER 15

FSDKP_NOSE_TIP 2

FSDKP_NOSE_BOTTOM 49

FSDKP_NOSE_BRIDGE 22

FSDKP_NOSE_LEFT_WING 43

FSDKP_NOSE_LEFT_WING_OUTER 45

FSDKP_NOSE_LEFT_WING_LOWER 47

FSDKP_NOSE_RIGHT_WING 44

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

57

FSDKP_NOSE_RIGHT_WING_OUTER 46

FSDKP_NOSE_RIGHT_WING_LOWER 48

FSDKP_MOUTH_RIGHT_CORNER 3

FSDKP_MOUTH_LEFT_CORNER 4

FSDKP_MOUTH_TOP 54

FSDKP_MOUTH_TOP_INNER 61

FSDKP_MOUTH_BOTTOM 55

FSDKP_MOUTH_BOTTOM_INNER 64

FSDKP_MOUTH_LEFT_TOP 56

FSDKP_MOUTH_LEFT_TOP_INNER 60

FSDKP_MOUTH_RIGHT_TOP 57

FSDKP_MOUTH_RIGHT_TOP_INNER 62

FSDKP_MOUTH_LEFT_BOTTOM 58

FSDKP_MOUTH_LEFT_BOTTOM_INNER 63

FSDKP_MOUTH_RIGHT_BOTTOM 59

FSDKP_MOUTH_RIGHT_BOTTOM_INNER 65

FSDKP_NASOLABIAL_FOLD_LEFT_UPPER 50

FSDKP_NASOLABIAL_FOLD_LEFT_LOWER 52

FSDKP_NASOLABIAL_FOLD_RIGHT_UPPER 51

FSDKP_NASOLABIAL_FOLD_RIGHT_LOWER 53

FSDKP_CHIN_BOTTOM 11

FSDKP_CHIN_LEFT 9

FSDKP_CHIN_RIGHT 10

FSDKP_FACE_CONTOUR1 7

FSDKP_FACE_CONTOUR2 5

FSDKP_FACE_CONTOUR12 6

FSDKP_FACE_CONTOUR13 8

FSDKP_FACE_CONTOUR14 66

FSDKP_FACE_CONTOUR15 67

FSDKP_FACE_CONTOUR16 68

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

58

FSDKP_FACE_CONTOUR17 69

Mask-on Face Detection
To detect faces covered by masks, you need to adjust the settings of several parameters. You

also need to download a model file trained specifically on masked faces (for visual face

detection) and put it into the working directory of your application:

https://luxand.com/download/fd_masks1.bin

If you are using FSDK_DetectFace or FSDK_DetectMultipleFaces to detect faces (i.e. you

don't use Tracker API), use the following code to set the recommended face detection

parameters and use the latest model file:

int err = 0;

FSDK_SetFaceDetectionParameters(true, false, 1024);

FSDK_SetFaceDetectionThreshold(5);

if (FSDKE_OK !=

FSDK_SetParameters("FaceDetectionModel=fd_masks1.bin;TrimFaces

WithUncertainFacialFeatures=false",

&err))

{

fprintf(stderr, "Error loading face detection model!\n");

exit(3);

}

Alternatively, if you are using Tracker API, use the following calls:

int err = 0;

FSDK_SetTrackerMultipleParameters(tracker,

"RecognizeFaces=false; HandleArbitraryRotations=true;

DetermineFaceRotationAngle=false; InternalResizeWidth=1024;

FaceDetectionThreshold=5;", &err);

if (FSDKE_OK != FSDK_SetTrackerMultipleParameters(tracker,

"FaceDetectionModel=fd_masks1.bin;TrimFacesWithUncertainFacial

Features=false",

&err))

{

fprintf(stderr, "Error loading face detection model!\n");

exit(3);

}

In the code above, the TrimFacesWithUncertainFacialFeatures parameter is set

to false. When it is set to true, faces with uncertain facial features are removed from the

detection result. As masks may cover many facial features, this setting was preventing such

faces from being detected. You can learn more about this parameter here:

Configuration

https://luxand.com/download/fd_masks1.bin

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

59

We don't recommend that you use face matching when this parameter is set to false, since

it will give a higher amount of false acceptances. We plan to update our face recognition

models so they support mask-on face matching soon.

We recommend setting the InternalResizeWidth parameter to 1024 so the faces that are far

from the camera are detected. If you don't expect your faces to be that far, you can lower the

parameter value to 512 or 256 to increase the speed of detection.

Face Matching
Luxand FaceSDK provides the API to extract face templates and match them. A template

extracted from a face can be stored in a database and can then be used to match faces using

the FSDK_MatchFaces function.

To extract a face template, use the FSDK_GetFaceTemplate,

FSDK_GetFaceTemplateInRegion or FSDK_GetFaceTemplateUsingFeatures functions. The

FSDK_MatchFaces function returns the facial similarity level. You may consider similarity to

be equal to the probability that templates belong to the same person.

More precisely: if the access control system provides access to a person when similarity is

higher of threshold х, the possibility of providing erroneous access to another person is 1-х.

For example, if the decision to provide access to a person is based on the code

if (similarity > 0.99)

 AllowAccess();

the possibility of erroneous access to another person is 0.01, or 1%.

A facial template contains data that describes the face. There is no direct way to re-create the

original face image from a template. However, when using Tracker API, it may store the

original facial images in Tracker memory (see the Storing original facial images section).

To determine if the matched templates belong to the same person (with a specified error

possibility), you can compare the facial similarity value with a threshold calculated by the

FSDK_GetMatchingThresholdAtFAR or FSDK_GetMatchingThresholdAtFRR functions.

Note: it is recommended to retain both the original face images and their templates in the

database. This is because future versions of Luxand FaceSDK may offer an improved

template extraction algorithm, together with changes to the template format. If you are using

Tracker API, there is an option to convert its memory automatically if the template format

changes (see the Storing original facial images section).

A face template is stored in the FSDK_FaceTemplate data structure.

In .NET, there is no specific data type for a template. Instead, it is stored in an array of bytes

of FSDK.TemplateSize length. Below is an example of retrieving facial template in C#.

C# Example:

templateData = new byte[FSDK.TemplateSize];

FSDK.GetFaceTemplate(imageHandle, out templateData);

C++ Declaration:

typedef struct {

char ftemplate [1040];

} FSDK_FaceTemplate;

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

60

Delphi Declaration:

FSDK_FaceTemplate = record

 Template: array[0.. 1040-1] of byte;

end;

PFSDK_FaceTemplate = ^FSDK_FaceTemplate;

Java and Android Declaration:

The class FSDK_FaceTemplate has the following property:

public byte template[];

VB Declaration:

Public Type FSDK_FaceTemplate

FaceTemplate(1040) as Byte

End Type

FSDK_GetFaceTemplate Function

This function is used to extract a template from a facial image. The function first detects a

face, then detects its facial features and extracts the template.

If there is more than one face in the image, the template is extracted for the face with the most

clearly visible details. If there is no clearly visible face, the function returns an error code. To

set the threshold determining the accepted quality for faces, use the

FSDK_SetFaceDetectionThreshold function.

If the face position or its features or eye centers are known, it is more efficient to use the

FSDK_GetFaceTemplateInRegion or FSDK_GetFaceTemplateUsingEyes functions. To

extract the template for a specific face, use the FSDK_GetFaceTemplateInRegion function.

C++ Syntax:

int FSDK_GetFaceTemplate(HImage Image, FSDK_FaceTemplate*

FaceTemplate);

Delphi Syntax:

function FSDK_GetFaceTemplate(Image: HImage; FaceTemplate:

PFSDK_FaceTemplate): integer;

C# Syntax:

int FSDK.GetFaceTemplate(int Image, out byte[] FaceTemplate);

VB Syntax:

Function FSDKVB_GetFaceTemplate(ByVal Image As Long, ByRef

FaceTemplate As Byte) As Long

Java Syntax:

int FSDK.GetFaceTemplate(HImage Image,

FSDK_FaceTemplate.ByReference FaceTemplate);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

61

Android Syntax:

int FSDK.GetFaceTemplate(HImage Image, FSDK_FaceTemplate

FaceTemplate);

CImage Syntax:

byte[] FSDK.CImage.GetFaceTemplate();

Parameters:

Image– handle of the image from which to extract the face template.

FaceTemplate – pointer to the FSDK_FaceTemplate structure, used to receive the face

template.

Return Value:

Returns FSDKE_OK if successful. If no faces are found, or the quality of the image is not

sufficient, the function returns the FSDKE_FACE_NOT_FOUND code.

FSDK_GetFaceTemplateInRegion Function

Extracts a template for a face located in a specific region returned by FSDK_DetectFace or

FSDK_DetectMultipleFaces.

The function detects facial features in a specific region and extracts a template. The face

detection stage is not performed. This function can be useful if an approximate face size and

position is known, or to process a specific face returned by FSDK_DetectFace or

FSDK_DetectMultipleFaces. The function returns no error if the face is not clearly visible.

This is because it assumes that if face detection functions return a detected face position, the

face is of sufficient quality.

If facial features or eye centers are known, it is more efficient to use the

FSDK_GetFaceTemplateUsingFeatures or FSDK_GetFaceTemplateUsingEyes function.

C++ Syntax:

int FSDK_GetFaceTemplateInRegion(HImage Image, TFacePosition*

FacePosition, FSDK_FaceTemplate* FaceTemplate);

Delphi Syntax:

function FSDK_ GetFaceTemplateInRegion (Image: HImage;

FacePosition: PFacePosition; FaceTemplate:

PFSDK_FaceTemplate): integer;

C# Syntax:

int FSDK.GetFaceTemplateInRegion(int Image, ref

FSDK.TFacePosition FacePosition, out byte[] FaceTemplate);

VB Syntax:

Function FSDKVB_GetFaceTemplateInRegion(ByVal Image As Long,

ByRef FacePosition As TFacePosition, ByRef FaceTemplate As

Byte) As Long

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

62

Java Syntax:

int FSDK.GetFaceTemplateInRegion(HImage Image, TFacePosition

FacePosition, FSDK_FaceTemplate.ByReference FaceTemplate);

Android Syntax:

int FSDK.GetFaceTemplateInRegion(HImage Image, TFacePosition

FacePosition, FSDK_FaceTemplate FaceTemplate);

CImage Syntax:

byte[] FSDK.CImage.GetFaceTemplateInRegion(ref

FSDK.TFacePosition FacePosition);

Parameters:

Image – handle of the image from which to extract the face template.

FacePosition – pointer to the face position structure.

FaceTemplate – pointer to the FSDK_FaceTemplate structure, used to receive the face

template.

Return Value:

Returns FSDKE_OK if successful.

FSDK_GetFaceTemplateUsingEyes Function

Extracts a face template using the detected eye centers.

The function receives eye centers coordinates detected by the FSDK_DetectFacialFeatures,

FSDK_DetectFacialFeaturesInRegion, FSDK_DetectEyes or FSDK_DetectEyesInRegion

functions and extracts a face template. Face detection, facial feature detection, and eye centers

detection are not performed. This function can be useful when facial features or eye centers

for a specific face are already detected. The function returns no error if the face is not clearly

visible, since it assumes that if the face and its facial features or eye centers are already

detected, the face is of sufficient quality.

Note that the FSDK_GetFaceTemplate, FSDK_GetFaceTemplateInRegion and

FSDK_GetFaceTemplateUsingFeatures functions return templates that could be matched with

higher accuracy, so it is recommended to use these functions instead.

C++ Syntax:

int FSDK_GetFaceTemplateUsingEyes(HImage Image, FSDK_Features*

eyeCoords, FSDK_FaceTemplate* FaceTemplate);

Delphi Syntax:

function FSDK_ GetFaceTemplateUsingEyes(Image: HImage;

eyeCoords: PFSDK_Features; FaceTemplate: PFSDK_FaceTemplate):

integer;

C# Syntax:

int FSDK.GetFaceTemplateUsingEyes(int Image, ref FSDK.TPoint[]

eyeCoords, out byte[] FaceTemplate);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

63

VB Syntax:

Function FSDKVB_GetFaceTemplateUsingEyes(ByVal Image As Long,

ByRef eyeCoords As TPoint, ByRef FaceTemplate As Byte) As Long

Java Syntax:

int FSDK.GetFaceTemplateUsingEyes(HImage Image, FSDK_Features

eyeCoords, FSDK_FaceTemplate.ByReference FaceTemplate);

Android Syntax:

int FSDK.GetFaceTemplateUsingEyes(HImage Image, FSDK_Features

eyeCoords, FSDK_FaceTemplate FaceTemplate);

CImage Syntax:

byte[] FSDK.CImage.GetFaceTemplateUsingEyes(ref FSDK.TPoint[]

eyeCoords);

Parameters:

Image – handle of the image to extract the face template from.

eyeCoords – pointer to the FSDK_Features array containing eye centers coordinates.

FaceTemplate – pointer to the FSDK_FaceTemplate structure for receiving the face

template.

Return Value:

Returns FSDKE_OK if successful.

FSDK_GetFaceTemplateUsingFeatures Function

Extracts a face template using the detected facial feature coordinates.

The function receives facial feature coordinates detected by the FSDK_DetectFacialFeatures

or FSDK_DetectFacialFeaturesInRegion functions and extracts a face template. Face

detection, facial feature detection, and eye centers detection are not performed. This function

can be useful when facial features for a specific face are already detected. The function

produces no error if the face is not clearly visible, since it assumes that if the face and its

facial features are already detected, the face is of sufficient quality.

The function determines if facial features, starting with the 2nd, are equal to zero or

uninitialized. In this case, the functions calls FSDK_GetFaceTemplateUsingEyes instead.

C++ Syntax:

int FSDK_GetFaceTemplateUsingFeatures(HImage Image,

FSDK_Features* FacialFeatures, FSDK_FaceTemplate*

FaceTemplate);

Delphi Syntax:

function FSDK_ GetFaceTemplateUsingFeatures(Image: HImage;

FacialFeatures: PFSDK_Features; FaceTemplate:

PFSDK_FaceTemplate): integer;

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

64

C# Syntax:

int FSDK.GetFaceTemplateUsingFeatures(int Image, ref

FSDK.TPoint[]FacialFeatures, out byte[] FaceTemplate);

VB Syntax:

Function FSDKVB_GetFaceTemplateUsingFeatures(ByVal Image As

Long, ByRef FacialFeaturesAs TPoint, ByRef FaceTemplate As

Byte) As Long

Java Syntax:

int FSDK.GetFaceTemplateUsingFeatures(HImage Image,

FSDK_Features FacialFeatures, FSDK_FaceTemplate.ByReference

FaceTemplate);

Android Syntax:

int FSDK.GetFaceTemplateUsingFeatures(HImage Image,

FSDK_Features FacialFeatures, FSDK_FaceTemplate FaceTemplate);

CImage Syntax:

byte[] FSDK.CImage.GetFaceTemplateUsingFeatures(ref

FSDK.TPoint[]FacialFeatures);

Parameters:

Image – handle of the image to extract the face template from.

FacialFeatures – pointer to the FSDK_Features array containing facial feature

coordinates.

FaceTemplate – pointer to the FSDK_FaceTemplate structure for receiving the face

template.

Return Value:

Returns FSDKE_OK if successful.

FSDK_MatchFaces Function

Match two face templates. The returned value determines the similarity of the faces.

C++ Syntax:

int FSDK_MatchFaces(FSDK_FaceTemplate* FaceTemplate1,

FSDK_FaceTemplate* FaceTemplate2, float* Similarity);

Delphi Syntax:

function FSDK_MatchFaces(FaceTemplate1, FaceTemplate2:

PFSDK_FaceTemplate; Similarity: PSingle): integer;

C# Syntax:

int FSDK.MatchFaces(ref byte[] FaceTemplate1, ref byte[]

FaceTemplate2, ref float Similarity);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

65

VB Syntax:

Function FSDKVB_MatchFaces(ByRef FaceTemplate1 As Byte, ByRef

FaceTemplate2 As Byte, ByRef Similarity As Single) As Long

Java Syntax:

int FSDK.MatchFaces(FSDK_FaceTemplate.ByReference

FaceTemplate1, FSDK_FaceTemplate.ByReference FaceTemplate2,

float Similarity[]);

Android Syntax:

int FSDK.MatchFaces(FSDK_FaceTemplate FaceTemplate1,

FSDK_FaceTemplate FaceTemplate2, float Similarity[]);

Parameters:

FaceTemplate1 – pointer to the FSDK_FaceTemplate structure, using the first template

for comparison.

FaceTemplate2 – pointer to the FSDK_FaceTemplate structure, using the second

template for comparison.

Similarity – pointer to an integer value, used to receive the similarity of the face

templates.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_INVALID_TEMPLATE if any of the

face templates is in an invalid format.

Returns FSDKE_UNSUPPORTED_TEMPLATE_VERSION if any of the templates is

created with an unsupported version of FaceSDK.

FSDK_GetMatchingThresholdAtFAR Function

This function returns the threshold value for similarity to determine if two matched templates

belong to the same person at a given FAR (False Acceptance Rate) value. The FAR

determines the acceptable error rate when two different people’s templates are mistakenly

recognized as the same person. Decreasing FAR leads to an increase in FRR – i.e. with low

FAR it becomes more probable that two templates from the same person will be determined

as belonging to different people.

C++ Syntax:

int FSDK_GetMatchingThresholdAtFAR(float FARValue, float*

Threshold);

Delphi Syntax:

function FSDK_GetMatchingThresholdAtFAR(FARValue: single; var

Threshold: single): integer;

C# Syntax:

int FSDK.GetMatchingThresholdAtFAR(float FARValue, ref float

Threshold);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

66

VB Syntax:

Function FSDKVB_GetMatchingThresholdAtFAR(ByVal FARValue As

Single, ByRef Threshold As Single) As Long

Java and Android Syntax:

int FSDK.GetMatchingThresholdAtFAR(float FARValue, float

Threshold[]);

Parameters:

FARValue – the desired FAR value. Varies from 0.0 (means 0%) to 1.0 (means 100%).

Threshold – pointer to a float variable to store the calculated Threshold value.

Return Value:

Returns FSDKE_OK if successful.

Example

FSDK_FaceTemplate template1, template2;

float MatchingThreshold, Similarity;

FSDK_GetMatchingThresholdAtFAR(0.02, &MatchingThreshold);

FSDK_GetFaceTemplate(img1, &template1);

FSDK_GetFaceTemplate(img2, &template2);

FSDK_MatchFaces(&template1, &template2, &Similarity);

if (Similarity > MatchingThreshold)

 printf("Same Person\n");

else

 printf("Different Person\n");

FSDK_GetMatchingThresholdAtFRR Function

This function returns the threshold value for similarity to determine if two matched templates

belong to the same person at a given FRR (False Rejection Rate) value. The FRR determines

the acceptable error rate when two templates of the same person are identified as belonging to

different people. Decreasing FRR leads to an increase in FAR – i.e. with low FRR it becomes

more probable that two different people’s templates will be recognized as the same person.

C++ Syntax:

int FSDK_GetMatchingThresholdAtFRR(float FRRValue, float*

Threshold);

Delphi Syntax:

function FSDK_GetMatchingThresholdAtFRR(FRRValue: single; var

Threshold: single): integer;

C# Syntax:

int FSDK.GetMatchingThresholdAtFRR(float FRRValue, ref float

Threshold);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

67

VB Syntax:

Function FSDKVB_GetMatchingThresholdAtFRR(ByVal FRRValue As

Single, ByRef Threshold As Single) As Long

Java and Android Syntax:

int FSDK.GetMatchingThresholdAtFRR(float FRRValue, float

Threshold[]);

Parameters:

FRRValue – the desired FRR value. Varies from 0.0 (means 0%) to 1.0 (means 100%).

Threshold – pointer to a float variable, used to store the calculated Threshold value.

Return Value:

Returns FSDKE_OK if successful.

Gender, Age and Facial Expression Recognition
The SDK recognizes the gender, age and facial expressions of subjects. It recognizes if a

smile is present and if the eyes are open or closed. To accomplish this, first you must to detect

facial features in an image, and then pass these features to the

FSDK_DetectFacialAttributeUsingFeatures function, specifying the "Gender", "Age"

or the "Expression" attribute.

FSDK_DetectFacialAttributeUsingFeatures Function

Detects an attribute of a face, and returns the Values of a particular attribute, and Confidences

in these Values.

Each facial attribute has a number of Values, and each Value has an associated Confidence. A

Value is a string, and a Confidence is a float from 0 to 1, which represents confidence level of

this particular value of the attribute.

The following attribute names are supported:

"Liveness" – to get the liveness probability (see the Passive Liveness section).

"Gender" – to detect the gender of a face. The attribute has "Male" and "Female"

values.

"Age" – to detect the age of a face. The attribute has "Age" value.

"Expression" – to detect the expression of a face. The attribute has "Smile" and

"EyesOpen" values. The Values and their Confidences are returned in a string of the

following format:

"Value1=Confidence1[;Value2=Confidence2[;…]]"

For example, when calling the function with the "Gender" attribute, the following string

may be returned:

"Male=0.95721;Female=0.04279”

It means that the subject has male gender with a confidence of 95.7%, and female gender with

a confidence of 4.3%.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

68

When calling the function with the "Age" attribute, the following string may be returned:

"Age=37"

When calling the function with the "Expression" attribute, the following string may be

returned:

"Smile=0.987;EyesOpen=0.9952"

It means that the subject smiles with a confidence of 98.7%, and the eyes are open with a

confidence of 99.5%. You may use several attributes in a single function call separated by

";". For example, if AttributeName is "Gender; Age; Expression", the result

may be the following:

"Male=0.95721;Female=0.04279;Age=37;Smile=0.987;EyesOpen=0.995

"

You may use the FSDK_GetValueConfidence to parse the returned string and retrieve the

Confidences for individual Values.

C++ Syntax:

int FSDK_DetectFacialAttributeUsingFeatures(HImage Image,

const FSDK_Features * FacialFeatures, const char *

AttributeName, char * AttributeValues, long long

MaxSizeInBytes);

Delphi Syntax:

function FSDK_DetectFacialAttributeUsingFeatures(Image:

HImage; FacialFeatures: PFSDK_Features; AttributeName,

AttributeValues: PAnsiChar; MaxSizeInBytes: int64): integer;

C# Syntax:

int FSDK.DetectFacialAttributeUsingFeatures(int Image, ref

TPoint [] FacialFeatures, string AttributeName, out string

AttributeValues, long MaxSizeInBytes);

VB Syntax:

Function FSDKVB_DetectFacialAttributeUsingFeatures(ByVal Image

As Long, ByRef FacialFeatures As TPoint, ByVal AttributeName

As String, ByRef AttributeValues As String, ByVal

MaxSizeInBytes As Currency) As Long

Java and Android Syntax:

int FSDK.DetectFacialAttributeUsingFeatures(int Image,

FSDK_Features FacialFeatures, String AttributeName, String

AttributeValues[], long MaxSizeInBytes);

Parameters:

Image – HImage handle in which to detect the attribute.

FacialFeatures – pointer to the FSDK_Features array containing facial feature

coordinates.

AttributeName – name of the attribute. You may specify several attributes separated by

";".

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

69

AttributeValues – pointer to the null-terminated string that will receive the attribute

Values and their Confidences.

MaxSizeInBytes – amount of memory allocated for the output string.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_INSUFFICIENT_BUFFER_SIZE if

there is not enough room to store the output string; however, the output string still fills up all

the space available.

FSDK_GetValueConfidence Function

Parses the string returned by FSDK_DetectFacialAttributeUsingFeatures or

FSDK_GetTrackerFacialAttribute, and returns the Confidence in an individual Value.

C++ Syntax:

intFSDK_GetValueConfidence(const char * AttributeValues, const

char * Value, float * Confidence);

Delphi Syntax:

function FSDK_GetValueConfidence(AttributeValues, Value:

PAnsiChar; Confidence: PSingle): integer;

C# Syntax:

int FSDK.GetValueConfidence(string AttributeValues, string

Value, ref float Confidence);

VB Syntax:

Function FSDKVB_GetValueConfidence(ByVal AttributeValues As

String, ByVal Value As String, ByRef Confidence As Single) As

Long

Java and Android Syntax:

int FSDK.GetValueConfidence(String AttributeValues, String

Value, float Confidence[]);

Parameters:

AttributeValues – pointer to the null-terminated string containing the attribute Values

and their Confidences.

Value – pointer to the null-terminated string containing the desired Value.

Confidence – pointer to the float variable to store the Confidence in a Value.

Return Value:

Returns FSDKE_OK if successful.

Example:

char AttributeValues[1024];

FSDK_DetectFacialAttributeUsingFeatures(image, features,

"Gender", AttributeValues, sizeof(AttributeValues));

float ConfidenceMale = 0.0f;

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

70

float ConfidenceFemale = 0.0f;

FSDK_GetValueConfidence(AttributeValues, "Male",

&ConfidenceMale);

FSDK_GetValueConfidence(AttributeValues, "Female",

&ConfidenceFemale);

Liveness Detection
The SDK offers several approaches to detect spoofing attempts (when a photo or a video is

presented to the camera instead of a real person). There are passive liveness detection, active

liveness detection, and thermal face detection. A combination of several approaches provides

the best reliability.

Passive Liveness

Passive liveness detecion is the most sophisticated anti-spoofing technology. It does not

require any special hardware, nor does it ask users to perform any actions to prove the

liveness - it works just by analyzing images.

Passive liveness detection works with both still images and videos. The probability of a

subject being live is available as the Liveness facial attribute. For still images, the attribute

can be rerieved with the FSDK_DetectFacialAttributeUsingFeatures function. For videos, use

the FSDK_GetTrackerFacialAttribute function of Tracker API. To enable passive livenes

detection in Tracker API, make sure to pass the "DetectLiveness=true" parameter to

Tracker API.

Using Tracker API for passive liveness detection usually improves the reliability of the

liveness detection, as liveness is detected in a number of facial appearances on consecutive

video frames. The resulting liveness probability p is calculated as a soft minimum:





=

−

=

−

=
n

i

p

n

i

p

i

i

i

e

ep
p

1

1





,

where pi is the liveness probability detected on the frame i; n is the number of frames.

The following Tracker parameters can be used to adjust passive liveness detection:

AttributeLivenessSmoothingAlpha – the α parameter. The default value is 1.

LivenessFramesCount – the minimum number of frames required before the liveness

attribute is calculated. The default value is 15.

Note that an RGB color image is required to perform the passive liveness check, grayscale

images aren’t supported.

Active Liveness

Active liveness check requires Tracker API, as demonstrated in the ActiveLiveness samples.

Liveness is verified by asking the user to perform a set of actions in front of the camera.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

71

Thermal Face Detection

Thermal face detection can also be used to verify liveness. In a typical scenario, the system is

equipped with a thermal camera and an ordinary "visual" camera. Both cameras should

capture the same field of view. To ensure a face is live, it must be detected in the same place

both by the visual and the thermal camera. For more information see the Face Detection on

Thermal Images section.

Working with Cameras
The library offers a set of functions to work with DirectShow/v4l2-compatible web cameras

and IP cameras with an MJPEG interface. The functions allow single frames to be retrieved

from a camera one-by-one; they are stored in HImage descriptors. The application usually

grabs frames in a loop, displaying each frame in its window and performing manipulations

with images (such as face detection).

Web camera functions are available only for Windows and Linux platforms. IP camera

functions are available for all platforms.

Android and iOS samples include platform-specific code working with cameras on phones

and tablets.

Data Types

There are data types to store the information about video formats. Note that the names of

video cameras are stored in wide char format (each char occupies two bytes).

C++ Declaration:

typedef struct {

 int Width;

 int Height;

 int BPP;

} FSDK_VideoFormatInfo;

typedef enum {

 FSDK_MJPEG

} FSDK_VIDEOCOMPRESSIONTYPE;

Delphi Declaration:

FSDK_VideoFormatInfo = record

 Width: integer;

 Height: integer;

 BPP: integer;

end;

PFSDK_VideoFormatInfo = ^FSDK_VideoFormatInfo;

FSDK_VideoFormatInfoArray =

array[0..255] of FSDK_VideoFormatInfo;

PFSDK_VideoFormatInfoArray = ^FSDK_VideoFormatInfoArray;

FSDK_CameraList = array[0..255] of PWideChar;

PFSDK_CameraList = ^FSDK_CameraList;

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

72

FSDK_VIDEOCOMPRESSIONTYPE = (

FSDK_MJPEG

);

VB Declaration:

Type FSDK_VideoFormatInfo

 Width As Long

 Height As Long

 BPP As Long

End Type

Enum FSDK_VIDEOCOMPRESSIONTYPE

 FSDK_MJPEG

End Enum

Java Declaration:

The class FSDK_VideoFormatInfo has the following properties:

public int Width, Height, BPP;

class FSDK_VideoFormats {

public FSDK_VideoFormatInfo.ByValue formats[];

}

class TCameras {

public String cameras[];

}

Java and Android Declaration:

class HCamera {

protected int hcamera;

}

class FSDK_VIDEOCOMPRESSIONTYPE {

 public static final int FSDK_MJPEG = 0;

}

FSDK_InitializeCapturing Function

This function initializes the capturing process (but does not open a camera). This function

should be called in a certain thread that works with cameras. Note that on Windows platforms

this function initializes COM in the thread; if you already initialized COM, you must not call

this function, and you must not call FSDK_FinalizeCapturing.

C++ Syntax:

int FSDK_InitializeCapturing(void);

Delphi Syntax:

function FSDK_InitializeCapturing: integer;

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

73

C# Syntax:

int FSDKCam.InitializeCapturing();

VB Syntax:

Function FSDKVB_InitializeCapturing() As Long

Java Syntax:

int FSDKCam.InitializeCapturing();

Android Syntax:

int FSDK.InitializeCapturing();

Return Value:

Returns FSDKE_OK if successful.

FSDK_FinalizeCapturing Function

This function finalizes the capturing process, initialized by the FSDK_InitializeCapturing

function (and finalizes COM on Windows platforms). If you already finalized COM, you

must not call this function.

C++ Syntax:

int FSDK_FinalizeCapturing(void);

Delphi Syntax:

function FSDK_FinalizeCapturing: integer;

C# Syntax:

int FSDKCam.FinalizeCapturing();

VB Syntax:

Function FSDKVB_FinalizeCapturing() As Long

Java Syntax:

int FSDKCam.FinalizeCapturing();

Android Syntax:

int FSDK.FinalizeCapturing();

Return Value:

Returns FSDKE_OK if successful.

FSDK_SetCameraNaming Function

Sets the retrieval format for the FSDK_GetCameraList function. Depending on the value of

the argument, either web camera names (by default) or their unique IDs (Device Path) are

returned. Device Path may be necessary if the system has several web cameras from the same

manufacturer that have the same name. This function does not support IP cameras.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

74

C++ Syntax:

int FSDK_SetCameraNaming(bool UseDevicePathAsName);

Delphi Syntax:

function FSDK_SetCameraNaming(UseDevicePathAsName: boolean):

integer;

C# Syntax:

int FSDKCam.SetCameraNaming(bool UseDevicePathAsName)

VB Syntax:

Function FSDKVB_SetCameraNaming(ByVal UseDevicePathAsName As

Boolean) As Long

Java Syntax:

int FSDKCam.SetCameraNaming (boolean UseDevicePathAsName);

Parameters:

UseDevicePathAsName – sets a retrieval format for the FSDK_GetCameraList function.

FALSE: FSDK_GetCameraList returns the list of names for cameras installed in the system;

TRUE: FSDK_GetCameraList returns the list of unique device paths of these cameras.

Return Value:

Returns FSDKE_OK if successful.

FSDK_GetCameraList Function

This function retrieves the list of web cameras available in the system. The name of each

camera is stored in wide char format (each character occupies two bytes). The function does

not support IP cameras. The camera list must be destroyed by calling the

FSDK_FreeCameraList function after the list is no longer needed.

C++ Syntax:

int FSDK_GetCameraList(wchar_t*** CameraList, int*

CameraCount);

Delphi Syntax:

function FSDK_GetCameraList(CameraList: PWideChar;CameraCount:

Pinteger): integer;

C# Syntax:

int FSDKCam.GetCameraList(out string[] CameraList, out int

CameraCount)

VB Syntax:

Function FSDKVB_GetCameraList(ByRef CameraList As Variant,

ByRef CameraCount As Long) As Long

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

75

Java Syntax:

int FSDKCam.GetCameraList(TCameras CameraList, int

CameraCount[]);

Parameters:

CameraList – pointer to wchar_t** variable to store the camera list.

CameraCount – pointer to integer variable to store the count of cameras in the system.

Return Value:

Returns FSDKE_OK if successful.

Example

wchar_t** CameraList;

int CameraCount;

FSDK_InitializeCapturing();

if (FSDK_GetCameraList(&CameraList, &CameraCount)==FSDKE_OK)

for (int i=0; i<CameraCount; i++)

 wprintf(L"camera: %s\n", CameraList[i]);

printf("%d camera(s) found.\n", CameraCount);

FSDK_FinalizeCapturing();

FSDK_GetCameraListEx Function

This function retrieves the list of names and the device paths of the web cameras available in

the system. The name and the device path of each camera are stored in wide char format (each

character occupies two bytes) at the same indices at the corresponding arrays. The function

does not support IP cameras. Both lists must be destroyed by calling the

FSDK_FreeCameraList function after they are no longer needed.

C++ Syntax:

int FSDK_GetCameraListEx(wchar_t*** CameraNameList, wchar_t***

CameraDevicePathList, int* CameraCount);

Delphi Syntax:

function FSDK_GetCameraListEx(CameraNameList: PWideChar;

CameraDevicePathList: PWideChar; CameraCount: PInteger):

integer;

C# Syntax:

int FSDKCam.GetCameraListEx(out string[] CameraNameList, out

string[] CameraDevicePathList, out int CameraCount)

VB Syntax:

Function FSDKVB_GetCameraListEx(ByRef VCameraNameList As

Variant, ByRef VCameraDevicePathList As Variant, ByRef

CameraCount As Long) As Long

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

76

Java Syntax:

int FSDKCam.GetCameraListEx(TCameras CameraNameList, TCameras

CameraDevicePathList, int CameraCount[]);

Parameters:

CameraNameList – pointer to wchar_t** variable to store the camera name list.

CameraDevicePathList – pointer to wchar_t** variable to store the camera device

path list.

CameraCount – pointer to integer variable to store the number of cameras in the system.

Return Value:

Returns FSDKE_OK if successful.

FSDK_FreeCameraList Function

This function frees the list of web cameras obtained from the FSDK_GetCameraList or

FSDK_GetCameraListEx function. The call of the function is not required in .NET, VB and

Java.

C++ Syntax:

int FSDK_FreeCameraList(wchar_t*** CameraList, int

CameraCount);

Delphi Syntax:

function FSDK_FreeCameraList(CameraList: Pointer; CameraCount:

integer): integer;

Parameters:

CameraList – pointer to wchar_t** variable where the camera list is stored.

CameraCount – the count of cameras in the system, obtained from the

FSDK_GetCameraList or FSDK_GetCameraListEx function.

Note:

You must call FSDK_FreeCameraList for CameraNameList and CameraDevicePathList, if

you were using FSDK_GetCameraListEx.

Return Value:

Returns FSDKE_OK if successful.

FSDK_GetVideoFormatList Function

This function returns the list of video formats supported by a given camera. This function

does not support IP cameras.

C++ Syntax:

int FSDK_GetVideoFormatList(wchar_t* CameraName,

FSDK_VideoFormatInfo** VideoFormatList, int*

VideoFormatCount);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

77

Delphi Syntax:

function FSDK_GetVideoFormatList(CameraName: PWideChar;

VideoFormatList: PFSDK_VideoFormatInfo; VideoFormatCount:

Pinteger): integer;

C# Syntax:

int FSDKCam.GetVideoFormatList(string CameraName, out

FSDKcam.VideoFormatInfo[] VideoFormatList, out int

VideoFormatCount)

VB Syntax:

Function FSDKVB_GetVideoFormatList(ByVal CameraName As String,

ByRef VideoFormatList As Variant, ByRef VideoFormatCount As

Long) As Long

Java Syntax:

int FSDKCam.GetVideoFormatList(String CameraName,

FSDK_VideoFormats VideoFormatList, int VideoFormatCount[]);

Parameters:

CameraName – pointer to name of desired video camera.

VideoFormatList – pointer to FSDK_VideoFormatInfo* variable to store the list of

video formats.

VideoFormatCount – pointer to integer variable to store the count of video formats.

Return Value:

Returns FSDKE_OK if successful.

FSDK_FreeVideoFormatList Function

This function frees the list of video formats obtained from

FSDK_GetVideoFormatList.Calling this function is not required in .NET, VB and Java.

C++ Syntax:

int FSDK_FreeVideoFormatList(FSDK_VideoFormatInfo *

VideoFormatList);

Delphi Syntax:

function FSDK_FreeVideoFormatList(VideoFormatList: Pointer):

integer;

Parameters:

VideoFormatList – pointer to FSDK_VideoFormatInfo* variable where the list of video

formats is stored.

Return Value:

Returns FSDKE_OK if successful.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

78

FSDK_SetVideoFormat Function

The function sets the format of camera output. The function does not support IP cameras.

C++ Syntax:

int FSDK_SetVideoFormat(wchar_t* CameraName,

FSDK_VideoFormatInfo VideoFormat);

Delphi Syntax:

function FSDK_SetVideoFormat(CameraName: PWideChar;

VideoFormat: FSDK_VideoFormatInfo): integer;

C# Syntax:

int FSDKCam.SetVideoFormat(ref string CameraName,

FSDKcam.VideoFormatInfo VideoFormat);

VB Syntax:

Function FSDKVB_SetVideoFormat(ByVal CameraName As String,

ByRef VideoFormat As FSDK_VideoFormatInfo) As Long

Java Syntax:

int FSDKCam.SetVideoFormat(String CameraName,

FSDK_VideoFormatInfo.ByValue VideoFormat);

Parameters:

CameraName – pointer to name of desired video camera.

VideoFormat – desired video format.

Return Value:

Returns FSDKE_OK if successful.

Example

wchar_t** CameraList;

int CameraCount;

FSDK_VideoFormatInfo* VideoFormatList;

int VideoFormatCount;

FSDK_GetCameraList(&CameraList, &CameraCount);

FSDK_GetVideoFormatList(CameraList[0], &VideoFormatList,

&VideoFormatCount);

FSDK_SetVideoFormat(CameraList[0], VideoFormatList[0]);

FSDK_OpenVideoCamera Function

The function opens the web camera of a given name and returns its handle.

C++ Syntax:

int FSDK_OpenVideoCamera(wchar_t* CameraName, int*

CameraHandle);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

79

Delphi Syntax:

function FSDK_OpenVideoCamera(CameraName: PWideChar;

CameraHandle: Pinteger): integer;

C# Syntax:

int FSDKCam.OpenVideoCamera(ref string CameraName, ref int

CameraHandle);

VB Syntax:

Function FSDKVB_OpenVideoCamera(ByVal CameraName As String,

ByRef CameraHandle As Long) As Long

Java Syntax:

int FSDKCam.OpenVideoCamera (String CameraName, HCamera

CameraHandle);

Parameters:

CameraName – pointer to name of web camera to open.

CameraHandle – pointer to integer variable to store the opened camera handle.

Return Value:

Returns FSDKE_OK if successful.

FSDK_OpenIPVideoCamera Function

This function opens the IP camera at a given URL and returns its handle. You may call the

FSDK_SetHTTPProxy function to set an HTTP proxy for accessing the camera.

C++ Syntax:

int FSDK_OpenIPVideoCamera(FSDK_VIDEOCOMPRESSIONTYPE

CompressionType, char * URL, char * Username, char * Password,

int TimeoutSeconds, int * CameraHandle);

Delphi Syntax:

function FSDK_OpenIPVideoCamera(CompressionType:

FSDK_VIDEOCOMPRESSIONTYPE; URL: PAnsiChar; Username:

PAnsiChar; Password: PAnsiChar; TimeoutSeconds: integer;

CameraHandle: PInteger): integer;

C# Syntax:

int FSDKCam.OpenIPVideoCamera(FSDK_VIDEOCOMPRESSIONTYPE

CompressionType, string URL, string Username, string Password,

int TimeoutSeconds, ref int CameraHandle);

VB Syntax:

Function FSDKVB_OpenIPVideoCamera(ByVal CompressionType As

FSDK_VIDEOCOMPRESSIONTYPE, ByVal URL As String, ByVal Username

As String, ByVal Password As String, ByVal TimeoutSeconds As

Long, ByRef CameraHandle As Long) As Long

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

80

Java Syntax:

int FSDKCam.OpenIPVideoCamera(int CompressionType, String URL,

String Username, String Password, int TimeoutSeconds, HCamera

CameraHandle);

Android Syntax:

int

FSDK.OpenIPVideoCamera(FSDK_VIDEOCOMPRESSIONTYPECompressionTyp

e, String URL, String Username, String Password, int

TimeoutSeconds, HCamera CameraHandle);

Parameters:

CompressionType– the type of video stream (MJPEG by default).

URL – URL of the IP camera to be opened.

Username – IP camera access username.

Password – IP camera access password.

TimeoutSeconds – connection timeout in seconds.

CameraHandle – pointer to integer variable to store the opened camera handle.

Return Value:

Returns FSDKE_OK if successful.

FSDK_SetHTTPProxy Function

This function sets an HTTP proxy to be used with an IP camera. If a proxy is required, the

function should be called before the FSDK_OpenIPVideoCamera function.

C++ Syntax:

int FSDK_SetHTTPProxy(char* ServerNameOrIPAddress, unsigned

short Port, char* UserName, char* Password);

Delphi Syntax:

function FSDK_SetHTTPProxy(ServerNameOrIPAddress: PAnsiChar;

Port: Word; Username: PAnsiChar; Password: PAnsiChar):

integer;

C# Syntax:

int FSDK.SetHTTPProxy(string ServerNameOrIPAddress, UInt16

Port, string UserName, string Password);

VB Syntax:

Function FSDKVB_ SetHTTPProxy(ByVal ServerNameOrIPAddress As

String, ByVal Port As Long, ByVal Username As String, ByVal

Password As String) As Long

Java Syntax:

int FSDKCam.SetHTTPProxy(String ServerNameOrIPAddress, int

Port, String UserName, String Password);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

81

Android Syntax:

int FSDK.SetHTTPProxy(String ServerNameOrIPAddress, shortPort,

String UserName, String Password);

Parameters:

ServerNameOrIPAddress – proxy address.

Port – proxy port.

UserName – proxy username.

Password – proxy password.

Return Value:

Returns FSDKE_OK if successful.

FSDK_GrabFrame Function

Retrieves the current frame from a web camera or an IP camera and stores the frame in the

created HImage handle. If a camera returns an image, mirrored horizontally (it depends on the

camera settings), then you can mirror it by using FSDK_MirrorImage.

C++ Syntax:

int FSDK_GrabFrame(int CameraHandle, HImage* Image);

Delphi Syntax:

function FSDK_GrabFrame(CameraHandle: integer; var Image:

PHImage): integer;

C# Syntax:

int FSDKCam.GrabFrame(int CameraHandle, ref int Image);

VB Syntax:

Function FSDKVB_GrabFrame(ByVal CameraHandle As Long, ByRef

Image As Long) As Long

Java Syntax:

int FSDKCam.GrabFrame(HCamera CameraHandle, HImage Image);

Android Syntax:

int FSDK.GrabFrame(HCamera CameraHandle, HImage Image);

Parameters:

CameraHandle – handle of the opened camera to grab frame.

Image – pointer to HImage variable to store the frame. Note that the created HImage handle

should be deleted once it is no longer needed using the FSDK_FreeImage function.

Return Value:

Returns FSDKE_OK if successful.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

82

FSDK_CloseVideoCamera Function

This function closes the camera, opened by the FSDK_OpenVideoCamera or

FSDK_OpenIPVideoCamera function.

C++ Syntax:

int FSDK_CloseVideoCamera(int CameraHandle);

Delphi Syntax:

function FSDK_CloseVideoCamera(CameraHandle: integer):

integer;

C# Syntax:

int FSDKCam.CloseVideoCamera(int CameraHandle);

VB Syntax:

Function FSDKVB_CloseVideoCamera(ByVal CameraHandle As Long)

As Long

Java Syntax:

int FSDKCam.CloseVideoCamera(HCamera CameraHandle);

Parameters:

CameraHandle – handle of opened video camera to close.

Return Value:

Returns FSDKE_OK if successful.

Tracker API: Face Recognition and Tracking in Video
Streams

What is Tracker API

Tracker API is a set of functions that allows for recognizing subjects in live video streams.

The API receives the video frame by frame, and assigns a unique identifier (ID) to each

subject detected in the video. Thus, each subject can be determined by its ID across the video.

You can attach a name tag to an identifier, and query any identifier for its name. The API also

allows simple face tracking (without registering subjects); tracking of the coordinates of either

all facial features or just eye centers; and recognition of subjects’ gender, age and facial

expression. The API provides an estimate of both recognition rate and false acceptance rate as

the video progresses.

If your task is to track or recognize faces in video streams, consider using Tracker API instead

of manually calling functions like FSDK_DetectFace, FSDK_DetectFacialFeatures or

FSDK_GetFaceTemplate for each frame (“manual handling”). The difference between

Tracker API and manual handling is summarized in the table below.

 Tracker API Manual handling

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

83

 Tracker API Manual handling

Development effort A developer uses a few Tracker

API functions to handle an

incoming video frame and set and

retrieve subjects’ names. The API

automatically learns the

appearance of every detected

subject.

A developer must implement

different modes in the program:

a mode to enroll subjects and a

mode to recognize faces. In the

enrollment mode, the program

must store a certain (usually

found experimentally) number

of face templates in the

database, while the subject is

posing in front of the camera. In

recognition mode, a template for

each detected face is created and

is matched against the database.

Performance The API constantly learns how

subjects appear. Thus, its

recognition rate is usually higher

than of a system that merely

stores several templates of a

subject.

If environmental conditions

(such as lighting) change after

the enrollment, the system may

not recognize the subject, and a

new enrollment will be required.

Recognition rates Tracker API provides the estimate

of recognition rate and false

acceptance rate specifically for

video streams.

FSDK_MatchFaces provides

FAR/FRR values for matching a

pair of images. Typically, it is

not easy to estimate how the

storage of several templates per

person affects recognition rate,

how often false acceptances

occur as the video progresses,

and if false acceptance rate

increases as more subjects are

enrolled.

Enrollment The subject is generally not

required to pose. When the

operator assigns a name to the

subject, it is likely that Tracker

API has already captured enough

views of a subject to recognize it

in later frames.

The subject is required to pose

in front of the camera, for the

system to capture the face in

different views and

environmental conditions, and

with different facial expressions.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

84

 Tracker API Manual handling

Recognition without

enrollment

Every subject is recognized,

regardless of whether it was

already tagged with a name. The

API assigns a unique ID to track

the subject across the video.

This allows for surveillance

applications, when subjects

cannot be required to participate

willingly (that is, to pose) to be

enrolled for recognition.

Only enrolled subjects can be

recognized. The requirement to

participate actively in

recognition makes surveillance

applications difficult.

Tracking of multiple

faces

The API tracks, recognizes, and

allows assigning names to

multiple faces simultaneously

present in the video frame.

Usually only a single subject

can pose in front of the camera

when eтrolling. If other subjects

are visible, the system may

mistakenly store their templates

into the subject’s database

record. A separate tracking

mechanism is required to decide

whether the detected face

belongs to the enrolled subject

or not.

Facial feature

detection

Tracker API allows tracking of

facial feature coordinates of each

subject in the video frame. Jitter is

eliminated by smoothing.

The coordinates detected by

FSDK_DetectFacialFeatures

may jitter because of noise

present in the video. If multiple

faces are present, a tracking

mechanism is required to

implement smoothing.

Gender and age

recognition

The API allows for identifying

gender and age for each subject

tracked in the video. The analysis

of the video usually provides

higher recognition rates than still

image gender and age recognition.

When each video frame is

treated as a still image, gender

and age recognition rates are

usually lower.

Facial expression

recognition

The API allows for identifying if

a smile is present and if the eyes

are open or closed for each

subject tracked in the video. The

analysis of the video usually

provides higher recognition rates

than still image expression

recognition.

When each video frame is

treated as a still image,

expression recognition rates are

usually lower.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

85

Understanding Identifiers

The API analyzes the video stream sequentially, frame by frame. For each frame, the function

FSDK_FeedFrame returns the list of identifiers (integer numbers) of faces recognized in this

frame. The purpose of an identifier is to assign a unique number to each subject in the video.

If a face is similar to one recognized previously, it receives the same identifier. Otherwise, a

new identifier (in ascending numeric order) is assigned. Thus, subjects recognized as different

should get different identifiers.

It is important to note that the identifier value is meaningful only within a particular video

stream. Identifiers of the same subject are not expected to be the same across different video

streams.

A subject can have several identifiers

The same subject can get different identifiers in different frames (for example, ID1 in the first

frame and ID2 in the second, ID2 > ID1), if the system was not able to match its face to ones

previously seen (which might happen if the appearance of the subject on the second frame

was notably or unexpectedly different).

Merger of identifiers

However, as the video progresses, the system learns more about the appearance of each

person; at some point it may deduce that ID1 and ID2 actually represent the same person. In

such a case (and if it is possible) it merges both identifiers into ID1, further returning ID1 for

every novel recognized occurrence of this subject. The system retains the information of all

merger events, so it is possible to receive the resulting value of an early assigned identifier

(for example, receive the ID1 value when providing the ID2 value) by calling the

FSDK_GetIDReassignment function. Note that if an identifier was tagged with a name, it can

be merged only with other identifiers that are untagged; in such a case the tagged name is

retained.

When calling Tracker API functions with identifiers received on earlier frames, it is always

recommended to convert the identifier values with the FSDK_GetIDReassignment function

first, and only then pass them to Tracker API. The reason is that they may have been merged

on the subsequent frames, so the corresponding subjects are being represented with other

identifier values.

When identifiers are not merged

The API supports tagging an identifier with a name, provided by the user. If identifiers are

tagged with different names, they will not be merged.

The appearances of each subject are stored in the memory (see the Memory section). If a

subject has been tagged with a name, and the memory for this subject is full, it will not be

merged with any other identifier (because such a merger requires additional memory for the

subject).

Similar identifiers

The identifier returned by the FSDK_FeedFrame function can be similar enough to other

identifiers for the API to decide they represent the same person. Still, some reason (such as

the one described above) may prevent them from merging. In such case, similar identifiers of

an ID can be retrieved using the FSDK_GetSimilarIDList function.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

86

You should always retrieve the list of similar identifiers when deciding if therecognized face

belongs to a certain subject or not. Let us assume that you have a particular subject of interest

and should respond when it is recognized. You may have stored an identifier of that subject,

or assigned a name to it with FSDK_SetName, and wait for such identifier (or name) to

appear. (Keep in mind that you need to adjust the stored identifier with

FSDK_GetIDReassignment after calling FSDK_FeedFrame.) When the subject appears,

however, there is no guarantee that the stored identifier will be returned by the

FSDK_FeedFrame function. Instead, it may appear in the list of similar identifiers. Therefore,

you should compare your identifier against the list of similar identifiers for each ID returned

by FSDK_FeedFrame. Accordingly, you need to retrieve the names of each similar identifier,

for each ID returned by FSDK_FeedFrame, to find if any of these names belong to the subject

of interest. If you are not considering such lists of similar identifiers, your recognition rate

will be lower (that is, you may miss the appearance of the subject of interest). Of course, your

false acceptance rate will be lower as well. But the drop in recognition rate will be higher

compared to when you set a higher recognition threshold (see the Recognition Performance

section), and handle similar identifiers.

The function FSDK_GetAllNames implements the above functionality – it returns the name

of an identifier, concatenated with the names (if any) of similar identifiers, separated by a

semicolon.

Tracker Memory

The API allows limiting the memory used by a tracker. The memory size is measured in the

total number of facial appearances stored (about 11 Kbytes per appearance when the

KeepFaceImages parameter is set to true, and about 1.5 Kbytes when set to false). By default,

the limit is 2150 appearances (about 24 Mbytes or 3 Mbytes depending on the value of the

KeepFaceImages parameter). You can change the limit by setting the MemoryLimit

parameter (see the Tracker Parameters section) to your desired value.

Memory available for each subject

For each subject tagged with a name, the amount of memory available is

max(1, memoryLimit/(subjectCount+1))

where subjectCount is the total number of subjects tagged with a name. The remaining

memory is dedicated to untagged identifiers.

If, when setting a name with FSDK_SetName, there is not enough room for a new subject, the

API will return the FSDKE_INSUFFICIENT_TRACKER_MEMORY_LIMIT error.

Imposing memory limits

If a memory limit for an identifier, tagged with a name, is approached, then no new

appearances of that subject will be stored. That is, the system stops learning novel

appearances of the subject. Furthermore, the identifier will not be merged with any other

identifiers.

If a memory limit is approached for untagged identifiers, the earliest untagged facial

appearance becomes purged when calling FSDK_FeedFrame. Note that only a particular

appearance of some untagged identifier becomes purged, not the identifier’s entire record of

appearances; identifiers that have only one occurrence are purged completely. To prevent

purging, you may use the FSDK_LockID function.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

87

Note that if an identifier is tagged, and does not occupy more memory than available per

subject, its facial appearances are not purged.

How to set the memory limit

The higher the limit, the more identifiers you can tag, and the more facial appearances can be

stored for each identifier (thus improving the recognition rate). However, the Threshold

parameter should also be higher (but setting too high a Threshold has its downsides – see the

Recognition Performance section), for the false acceptance rate to stay at an acceptable level.

When increasing MemoryLimit, the frame rate may decrease. Therefore, it is practical to

choose a memory limit that will allow for a sufficient frame rate, will not require too high a

threshold, and will consume only a certain amount of memory, while at the same time

allowing for the storage of the desired number of subjects.

See the Recognition performance section to find which Threshold values should be chosen

with different memory limits to achieve the desired recognition rates.

Tracker Parameters

Each HTracker instance allows setting a number of parameters with the

FSDK_SetTrackerParameter or FSDK_SetTrackerMultipleParameters function.

Face tracking parameters

Note that the Tracker API does not use the parameters of face detection, set with

FSDK_SetFaceDetectionParameters or FSDK_SetFaceDetectionThresholds. Instead, you

should use the Tracker API parameters below.

FaceDetectionModel, TrimOutOfScreenFaces,

TrimFacesWithUncertainFacialFeatures – the parameters analogous to ones

described in the FaceSDK Parameters section. Their default values are (default, true, true).

HandleArbitraryRotations, DetermineFaceRotationAngle,

InternalResizeWidth – the parameters analogous to ones in

FSDK_SetFaceDetectionParameters. Their default values are (false, false, 256).

FaceDetectionThreshold – a parameter analogous to one in

FSDK_SetFaceDetectionThreshold. The default value is 5.

FaceTrackingDistance – specifies the maximum distance between faces of one person

on consecutive frames, to consider an uninterrupted tracking sequence. The parameter is

measured in width of the detected face. The default value is 0.5. You may decrease it when

the frame rate is high to lower the probability of false acceptances, or increase it when the

frame rate is low and the recognition rate is low due to interrupted tracking.

Face recognition parameters

RecognizeFaces – whether to recognize subject’s identity. If set to true, the system

attempts to assign each subject a unique id, while giving equal identifiers to the same subject

across the video. If set to false, the system will return a unique ID value for every

uninterrupted sequence of a detected face (that is, when a certain face is detected on every

frame of the sequence), regardless of the identity of this face. The default value is true.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

88

DetectGender – whether to recognize the gender of a subject. Gender recognition requires

the detection of facial features, so when set to true, facial features are detected regardless of

the DetectFacialFeatures parameter. The default value is false.

DetectAge – whether to recognize the age of a subject. Age recognition requires the

detection of facial features, so when set to true, facial features are detected regardless of the

DetectFacialFeatures parameter. The default value is false.

DetectExpression – whether to recognize facial expression of a subject. Expression

recognition requires the detection of facial features, so when set to true, facial features are

detected regardless of the DetectFacialFeatures parameter. The default value is false.

DetectLiveness – whether to perform passive liveness detection. See the Passive

Liveness section for more details. The default value is false.

Learning – whether to learn subjects’ appearances. If set to true, the API will learn the

appearance of each subject, unless its memory is full, and add new subjects to the memory. If

set to false, the system will return only the identifiers already present in the memory; no

addition of novel subjects, novel facial appearances, or merger of identifiers will occur. If a

subject does not match any appearance stored in the memory, FSDK_FeedFrame will return

the -1 identifier for that subject. Set this flag to false if you have a reason not to alter the

memory. The default value is true.

MemoryLimit – the amount of memory available for the storage of facial appearances. See

the Tracker Memory section below. The default value is 2150.

Threshold – the threshold used when deciding if two facial appearances belong to the same

subject. Each threshold value alters both the false acceptance rate and recognition rate. See

the Recognition Performance below. The default value is 0.992.

KeepFaceImages – whether to store the original facial images in the Tracker memory. See

the Storing original facial images, section for details. The default value is true.

Facial feature tracking parameters

DetectEyes – whether to detect eyes. Eyes will be detected regardless of the value of this

parameter when RecognizeFaces is set to 1. When eyes are detected, their coordinates can be

retrieved with FSDK_GetTrackerEyes. The default value is false.

DetectFacialFeatures – whether to detect facial features. Facial features are detected

when RecognizeFaces is set to 1, regardless of the value of this parameter. They are also

detected if DetectGender, DetectAge or DetectExpression are set to 1. The default value is

false.

DetectAngles – wheter to estimate out-of-plane face rotation angles by using the detected

facial features. Pan and Tilt are returned as the Angles facial attribute. The default value is

false.

FacialFeatureJitterSuppression – whether to suppress the jitter of facial features

by employing more processor resources. If 0, such jitter suppression is not employed. Set to a

higher value for better suppression. A non-zero setting takes effect only when

DetectFacialFeatures=true, even if facial features are actually detected due to the setting of

the RecognitionProcision, DetectGender, DetectAge or DetectExpression parameters.

The default value depends on NUM_THREADS, the number of threads supported by the

CPU, which can be obtained using the FSDK_GetNumThreads function. The default value is

NUM_THREADS – 1 when NUM_THREADS <= 4; 3 when NUM_THREADS <= 8;

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

89

NUM_THREADS/2 - 1 when NUM_THREADS <= 40; and 19 otherwise. Note that the way

the default value is selected may change the behavior of Tracker API from system to system.

That is, systems supporting more threads will display smoother facial feature coordinates by

default. This may also change the behavior of face recognition and attribute detection

(although it will not change their average accuracy). If you need Tracker API to return the

same output for the same input data regardless of the number of threads, set this parameter to

a fixed value in your application.

SmoothFacialFeatures – whether to smooth facial features from frame to frame to

prevent jitter. If set to false, the coordinates of facial features are detected independently of

the previous frame, and may jitter because of the noise present in the video. If the parameter is

set to true, the API will smooth the coordinates of facial features. The default value is true.

FacialFeatureSmoothingSpatial – a coefficient employed in facial feature

smoothing. Controls spatial smoothing of facial features. The default value is 0.5.

FacialFeatureSmoothingTemporal – a coefficient employed in facial feature

smoothing. Affects temporal smoothing of facial features (that is, how the smoothed

coordinates relate to their coordinates on the previous frame). The default value is 250.

Tuning for Optimal Performance

The higher frame rates of FSDK_FeedFrame (i.e., fast processing of frames) usually

positively affect the recognition rate for live video, because more facial appearances of a

person can be captured per unit of time.

Experiment with face detection parameters, especially withInternalResizeWidth: higher

values allow for faces to be detected at greater distance, but require additional time (and lower

the frame rate). If you find a high number of false detections (i.e. when faces are detected

where they are not present), try increasing the FaceDetectionThreshold parameter.

Setting DetectGender, DetectAge or DetectExpression to true will lower the frame rate. If you

need only to detect gender, age or facial expressions, you may consider setting the

RecognizeFaces parameter to false, in order to increase the frame rate.

Using the API

The API allows for creating several trackers within the program, each having a separate

memory for the recognized subjects and their names.

The tracker is represented with the HTracker data type.

C++ Declaration:

typedef unsigned int HTracker;

Locking identifiers

There are cases when you need to work with (or tag) an identifier across several frames. For

example, you may have the user interface running in a different thread than

FSDK_FeedFrame. Then, there is a chance that when a user selects an untagged identifier and

starts to enter a name for it, the identifier may become purged by FSDK_FeedFrame running

in parallel (see the Tracker Memory section). To prevent this, you need to use the

FSDK_LockID functions as soon as the user selected an identifier. The function will prevent

the untagged identifier from being purged completely.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

90

Multiple camera support

Tracker API is designed to support multiple cameras, though in the current release only a

single camera is supported. You should pass 0 as the CameraIdx parameter to every function

that accepts it. You should not alternate frames from multiple cameras while sending them to

FSDK_FeedFrame, since it will disrupt the tracking process, and yield a lower recognition

rate and a higher false acceptance rate. It is also not recommended to switch from one camera

to another while sending the frames using FSDK_FeedFrame. It is acceptable, however, to

switch cameras before the memory of the tracker is loaded with

FSDK_LoadTrackerMemoryFromFile or FSDK_LoadTrackerMemoryFromBuffer.

Storing original facial images

As the internal format of facial appearances may change in future versions of FaceSDK,

Tracker API has the KeepFaceImages parameter, which controls whether the original facial

images are stored in the Tracker memory. If the format changes, you will be able to convert

your Tracker memory to the new format automatically (if you’ve stored the original facial

images). In such a case, you won’t need to reenroll your subjects. It is recommended that you

keep this parameter set to true, its default setting.

When the KeepFaceImages parameter is set to true, Tracker API stores an original facial

image along with every facial appearance in the Tracker memory. The size of a facial

appearance is about 1.5 Kbytes when KeepFaceImages is set to false, and about 11 Kbytes

when KeepFaceImages is set to true. Note that if you’ve had this parameter set to false and

accumulated some facial appearances, their original facial images will be lost, even if you set

KeepFaceImages to true after that.

If you don’t want the original facial images to be stored in the Tracker memory, set this

parameter to false.

Usage Scenario

The following scenario is employed when using Tracker API.

1. Create a tracker (FSDK_CreateTracker) or load it from a file

(FSDK_LoadTrackerMemoryFromFile) or from a memory buffer

(FSDK_LoadTrackerMemoryFromBuffer).

2. Set tracker parameters (FSDK_SetTrackerParameter,

FSDK_SetTrackerMultipleParameters), such as face detection parameters, recognition

precision, or the option to recognize gender/age/facial expression or to detect facial

features.

3. Open a video camera (FSDK_OpenVideoCamera, FSDK_OpenIPVideoCamera), or

prepare to receive video frames from another source.

4. In a loop:

1) Receive a frame from a camera (FSDK_GrabFrame) or another source.

2) Send the image to the FSDK_FeedFrame function.

3) Display the image on a screen.

4) For each ID returned by FSDK_FeedFrame:

i. Retrieve its facial coordinates (FSDK_GetTrackerFacePosition), eye

center coordinates (FSDK_GetTrackerEyes), facial feature coordinates

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

91

(FSDK_GetTrackerFacialFeatures), gender, age or facial expression

(FSDK_GetTrackerFacialAttribute).

ii. Retrieve the list of possible names (FSDK_GetAllNames).

iii. If, relying on coordinates, you found that that user has clicked on a face,

call FSDK_LockID on that identifier, display an input box and ask the

user for a name of the subject. You may continue to run

FSDK_FeedFrame in parallel.

iv. If the user entered a name, set it using the FSDK_SetName function. If

the user chose to erase the subject, call FSDK_SetName with an empty

name. In any case, call FSDK_UnlockID to unlock the identifier.

v. If manually handling identifiers (for example, storing the identifier of

each subject to look up them later, or storing images of each subject),

call FSDK_GetSimilarIDCount and FSDK_GetSimilarIDList to

retrieve identifiers, similar to ID, and store (or compare against) them

as well. In addition, call FSDK_GetIDReassignment for every

previously stored identifier before comparing against them.

5) If necessary, save tracker memory to a file or a buffer

(FSDK_SaveTrackerMemoryToFile, FSDK_SaveTrackerMemoryToBuffer).

5. Free the tracker handle using FSDK_FreeTracker.

6. Close the video camera (FSDK_CloseVideoCamera).

User Interaction with the System

In a typical scenario, a user observes the images from a camera, with faces outlined in

rectangles and names displayed under the rectangles. There is an option to tag a subject with a

name by clicking its face and entering the name, or to remove the subject from the memory.

The software may notify the user when some previously defined subjects appear. The

software may additionally store each image of a subject, and allow browsing such subject’s

images. The software may store images of untagged subjects as well (and store their ID along

with the image), but keep in mind that if the memory limit is reached, earlier appearances of

untagged subjects will be purged, and should these subjects appear again, they may be given

with new ID numbers (unrelated to their old identifiers; see the Tracker Memory section).

The user normally should have control over the MemoryLimit and Theshold parameters to

alter the recognition quality and the number of subjects that can be stored in the system.

Enrollment

To enroll a subject, the user is usually only required to click a subject’s face and enter the

name. If the subject has been already present in front of the camera for a certain time (for

example, while approaching the user’s desk), it is likely that the API has stored enough facial

appearances of the subject to recognize it again. If this is not the case, the subject may be

asked to tilt or rotate its head, to walk closer to or further away from the camera, and the

lighting can be altered. If the frame rate is especially low, or if environmental conditions

change unexpectedly, the API may not recognize the subject in some appearances. In such

cases, the user may tag a subject with the same name on several occasions, until enough facial

appearances are stored, and the subject is consistently recognized.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

92

If you need to ensure that you track a live subject, consider detecting whether the facial

expression changes with the FSDK_GetTrackerFacialAttribute function.

Dealing with false acceptances

The API is designed to return several names with FSDK_GetAllNames for a certain ID. In

most cases, the system will return only a single name. If the system returns several names, it

means that a false acceptance has occurred. That is, two (or more) subjects became confused.

Although the false acceptance rate is usually low, there is no way to eliminate it completely;

instead, the user balances the false acceptance rate against the recognition rate. The software

should account for the scenario when a false acceptance has been occurred.

In an access control setting, you may decide to grant access to the subject if any of the names

recognized has the appropriate permissions. Alternatively, the software may signal about a

false acceptance, and the user may decide to set the Threshold parameter to a higher value –

to lower the probability of next false acceptance. In that case it is necessary, first, to erase the

persons that were confused (by calling FSDK_SetName with an empty name to remove the

name, and FSDK_PurgeID to remove all facial appearances of this ID), and then, when the

threshold is set to a higher value, to set their names again.

Keep in mind that not every false acceptance will return several names of a person. It is

possible that just a single incorrect name is returned, and the false acceptance may go

unnoticed. However, with the appropriate setting of the Threshold parameter, such scenarios

are rare.

Note that when there are one or more similar identifiers returned with

FSDK_GetSimilarIDList, and these identifiers do not have name tags, this does not always

mean a false acceptance. As described in the Understanding Identifiers section, when the

memory for an identifier is full, it will not become merged with other identifiers (even if they

represent the same subject), so these identifiers will be returned in the list of similar

identifiers.

Saving and Loading Tracker Memory

To save the memory of a tracker to file, use the FSDK_SaveTrackerMemoryToFile function.

Alternatively, you may save it to a memory buffer (for example, to for later importing into a

database). You need to call FSDK_GetTrackerMemoryBufferSize to determine the size of the

buffer, and then call FSDK_SaveTrackerMemoryToBuffer.

Conversely, to load the memory of a tracker from a file or a buffer, use the

FSDK_LoadTrackerMemoryFromFile or FSDK_LoadTrackerMemoryFromBuffer functions.

Note that you need to set the tracker parameters again after loading, because a new tracker

handle has been created, with parameters set to default values.

Note that this operation saves only the memory contents of a tracker: stored facial

appearances, identifiers, and names. The parameters of a tracker are not saved. Moreover, the

internal state of face tracking is not saved as well. It means that if, during the main loop

(where you call FSDK_FeedFrame), you save the tracker to a file, and then immediately

reload it, such an operation will disrupt face tracking. Because of this, the later recognition

results you receive will be different (compared to when such an operation was not done), and

the parameters will be reset to defaults. Also, you will not be able to receive face position, eye

coordinates, facial feature coordinates, or get the list of similar identifiers immediately after

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

93

loading. However, after the next FSDK_FeedFrame call, face tracking resumes, and the

aforementioned functions operate normally.

Recognition Performance

The performance of face recognition (i.e. how often a subject is recognized, and how often

different subjects are confused) is controlled with the Threshold and MemoryLimit

parameters. The higher the Threshold parameter (and the lower the MemoryLimit parameter),

the less often a subject will be recognized, and the less often confusions will occur.

Performance measures

Tracker API employs two performance measures: false acceptance rate (FAR) and

recognition rate (R). FAR measures the rate of confusing different subjects (that is, assigning

different subjects with equal identifier values) during a certain number of storage events, once

the memory becomes full. R measures the rate of recognizing a person after tagging, once all

available memory is full.

Understanding storage events

When calculating FAR, one could just count how often false acceptances occur during a

certain time interval (for example, an hour). However, such a measure will vary greatly across

different kinds of video footage.

For example, in an office setting, when subjects are sitting at their desks, and change their

positions or facial expressions rather slowly, almost every frame will be very similar to the

previous one. Therefore, the API will store novel facial appearances at a slow pace. If there

were no false acceptances on a previous frame, they are very unlikely to occur on the next;

therefore we expect false acceptances to occur rather rarely.

On the other hand, in an active setting (when many novel subjects appear in front of the

camera, move around, and disappear from view), we expect the system to store novel facial

appearances quite often, because many subjects appears at previously unseen views.

Therefore, we expect false acceptances to occur more often, because of the faster pace of the

video.

To employ a rate that is meaningful in both settings, we instead measure time not in seconds,

but in storage events. For example, in the office setting, at 12 frames per second, we may get

only 400 storage events during an hour, and in the active setting we may get 3600 storage

events during an hour. We measure FAR at an interval of 2000 storage events, which could

be roughly equal to 5 hours of a hypothetical less active setting, or 32 minutes of an active

setting. It is important to note that as facial appearances of a subject accumulate, the rate of

storage events will slow down, since there will be fewer novel facial appearances.

How to measure your rate of storage events

To measure the rate of storage events in your setting, call FSDK_GetTrackerParameter with

the MemorySize parameter during the main loop. Each time a storage event occurs, the

MemorySize parameter increases. As your video progresses, you may calculate how much

time will be needed to reach 2000 storage events. Note that when the memory is full, storage

events themselves still occur, but nothing is stored; this does not mean that FAR becomes

zero. You should estimate the rate of storage events before the memory is full.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

94

Understanding FAR

FAR is the rate of assigning different subjects with equal identifier values. The rate tells how

often a certain subject (say, John) will be falsely accepted as any other subject. For example,

if FAR is 0.001, John might expect a 0.001 probability of being falsely accepted as some

other subject. However, if we have 10 subjects in the system, such a rate applies to every one

of them. Therefore, it is practical to know the rate of falsely accepting at least two subjects

among any of them. Such a rate can be calculated as

1 – (1 – FAR)N*(N-1)/2

where N is the number of subjects. For example, at FAR=0.001, N=10, we have a 4.4% rate

that at least one false acceptance will occur during the 2000 storage events considered. To

have a 1% rate with 10 subjects, FAR should not exceed 0.0003.

Understanding R

R is the rate of recognizing a subject after it was tagged a single time, and all memory

available for a subject becomes full. A subject is successfully recognized, if its name is

present among the names returned by FSDK_GetAllNames. R is measured from 0 to 1, which

translates to recognition in 0% and 100%, respectively, of frames received by

FSDK_FeedFrame.

R depends mainly on the amount of memory available for each subject. For example, if there

are 30 subjects in your system, and you allow 20 units of memory for each subject, your

memory limit should be (30+1)*20=620.

Choosing Threshold value

To choose the Threshold value, refer to the tables below. You should consider the maximum

number of subjects to be tagged within your system, and the maximum memory per subject.

Generally, the higher the MemoryLimit is set, the higher the FAR will be (once all available

memory has been used).

Note that higher Threshold values together with a higher memory amount allow higher

recognition rate only when enough facial appearances of an identifier have been accumulated.

If there are sudden changes in facial appearance (due to low frame rate or environmental

factors, for example), it may require more time to capture enough facial appearances with a

higher Threshold value.

The tables below show the expected false acceptance rate and recognition rate.

False Acceptance Rate at Threshold and MemoryLimit

Threshold
MemoryLimit

350 700 1750 3500 5250 7500

0.992000 0.000081 0.000130 0.000231 0.000266 0.000277 0.000277

0.993141 0.000066 0.000107 0.000183 0.000209 0.000216 0.000216

0.994283 0.000062 0.000089 0.000144 0.000166 0.000170 0.000170

0.995424 0.000052 0.000068 0.000101 0.000114 0.000118 0.000118

0.996566 0.000042 0.000050 0.000072 0.000077 0.000081 0.000081

0.997707 0.000036 0.000040 0.000054 0.000055 0.000056 0.000056

0.998849 0.000030 0.000034 0.000045 0.000039 0.000039 0.000039

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

95

Threshold
MemoryLimit

350 700 1750 3500 5250 7500

0.999990 0.000002 0.000007 0.000009 0.000012 0.000014 0.000023

Recognition Rate at Threshold and Memory per subject

Threshold
Memory per subject

5 10 15 21

0.992000 0.995 0.999 0.999 0.999

0.993141 0.994 0.999 0.999 0.999

0.994283 0.993 0.998 0.999 0.999

0.995424 0.991 0.998 0.998 0.998

0.996566 0.986 0.997 0.997 0.997

0.997707 0.978 0.995 0.996 0.996

0.998849 0.956 0.986 0.988 0.988

0.999990 0.073 0.087 0.107 0.138

For example, let us assume that you have 30 subjects in an office setting, your frame rate is 12

per second, and you decide to allow 21 units of memory per subject. Therefore, your memory

limit is (30+1)*21 = 651 (see the formula in the Memory available for each subject section).

You decide to have a FAR of 0.000050 and calculate that with 30 subjects, there will be 2.2%

rate that a subject will be given with an ID of any other subject (see the formula in the

Understanding FAR section) during 2000 storage events (approximately 5 hours in an office

setting). To have a FAR of 0.000050 with MemoryLimit=700 (the value closest to 651 in the

table), you choose Threshold=0.996566. You note that at such a threshold and 21 units of

memory per subject, you have a 0.997 recognition rate (meaning subjects will be recognized

in 99.7% of frames in the video).

Note: it is not recommended to use Threshold higher than 0.999, since it will make Tracker

API recognize faces less often.

Gender, Age and Facial Expression Recognition

The API allows for identifying gender and age of a face and its expressions by using the

FSDK_GetTrackerFacialAttribute function.

To detect gender, you need to set the DetectGender tracking parameter to true. The function

returns confidence levels for each gender (male and female) in the output string. You can

parse this string using the FSDK_GetValueConfidence function.

To detect age, you need to set the DetectAge tracking parameter to true. The function then

returns the age of the face in the output string.

To detect expression, you need to set the DetectExpression tracking parameter to true. The

function returns confidence levels for each expression (if a smile is present and if the eyes are

open or closed) in the output string. You can parse this string using the

FSDK_GetValueConfidence function.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

96

The confidence level for each attributereturned by the FSDK_GetTrackerFacialAttribute

function, varies from 0 to 1 (except the “Age” attribute—for which the age itself—not a

confidence level, is returned). When recognizing gender, you may assume that the recognized

gender will be the one with the higher confidence level.

If your system should respond to the particular gender of a novel subject (for example, when

advertising separate products for male and female visitors), consider waiting for about a

second after the subject has first appear, for the gender to be recognized with higher accuracy.

You may also consider responding when the confidence level is not just merely than 0.5, but

exceeds a certain threshold (for example, 0.7 or 0.9, which translate to 70% or 90% accuracy).

If your system should respond to the particular expression of a subject (for example, taking a

picture only when a person smiles and the eyes are open), consider waiting for about 0.5

seconds after the subject has appeared. To find out if the expression is present, it is usually

optimal to compare the confidence in the attribute value with the 0.5 threshold (i.e., if the

confidence in the “Smile” value is greater than 0.5, the person smiles, and if the confidence in

the “EyesOpen” value is greater than 0.5, the eyes are open). You may use a higher threshold

for greater certainty, but in this case some expressions may not be detected.

Note that gender, age and expression recognition requires the detection of facial features, so

facial features will be detected regardless of the DetectFacialFeatures parameter value. This

will decrease the frame rate. You might consider setting the RecognizeFaces parameter to

false if you only need to detect gender, age or expressions and do not need recognition of the

subjects’ identities, which will increase the frame rate.

Face, Eye and Facial Feature Tracking

Tracker API supports the tracking of face, eye centers, and facial features in addition to the

recognition of a subject’s identity. You need to use the FSDK_GetTrackerFacePosition,

FSDK_GetTrackerEyes and FSDK_GetTrackerFacialFeatures to retrieve the corresponding

coordinates. You also need to set the parameter DetectEyes or DetectFacialFeatures to true

when tracking eyes or facial features, respectively. Tracker API perform smoothing of facial

features (see the SmoothFacialFeatures parameter).

When you only need to track faces, and do not need to recognize subjects’ identities, you can

disable face recognition to improve performance. To accomplish that, you need to set the

RecognizeFaces parameter to false.

Counting the number of people

You should not estimate the amount of people the system observed based on the values of the

identifiers, since some of they may have been merged with others. Instead, you may retain all

the ID values returned by Tracker API, and at the point when the number of people should be

estimated, you should replace each ID with the value returned by the

FSDK_GetIDReassignment function. Then, you can count the amount of different identifiers

in the list. Note that if memory limit is approached, some untagged identifiers may be purged,

and the amount of people may be overestimated. See the User Interaction with the System

section for details.

If each subject captured by the camera appears only once, you may consider not determining

the subject’s identity (set RecognizeFaces to false). Then, the value of the ID returned by the

API will be equal to the total number of continuous facial sequences, or approximately the

number of people appeared in front of the camera.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

97

Thread Safety

All tracker functions are thread safe. Note that you should avoid calling FSDK_FeedFrame

simultaneously on the same tracker and camera (the CameraIdx parameter) from several

threads, since it will disrupt the FSDK_GetTrackerEyes, FSDK_GetTrackerFacialFeatures,

FSDK_GetTrackerFacePosition, FSDK_GetTrackerFacialAttribute,

FSDK_GetSimilarIDCount, FSDK_GetSimilarIDList and FSDK_GetAllNames functions.

The reason is that the ID received from FSDK_FeedFrame must be passed to these functions

before the next FSDK_FeedFrame is executed with the following frame; otherwise these

functions may not perform correctly.

FSDK_CreateTracker Function

Creates a new tracker handle to be passed to other Tracker API functions.

C++ Syntax:

int FSDK_CreateTracker(HTracker * Tracker);

Delphi Syntax:

function FSDK_CreateTracker(Tracker: PHTracker): integer;

C# Syntax:

int FSDK.CreateTracker(ref int Tracker);

VB Syntax:

Function FSDKVB_CreateTracker(ByRef Tracker As Long) As Long

Java and Android Syntax:

int FSDK.CreateTracker(HTracker Tracker);

Parameters:

Tracker – pointer to the integer variable that will to store the created tracker handle.

Return Value:

Returns FSDKE_OK if successful.

FSDK_FreeTracker Function

Frees a tracker handle. The handle becomes invalid, and all memory associated with it is

released. You should not pass the tracker handle to any other Tracker API functions after the

handle was freed.

C++ Syntax:

int FSDK_FreeTracker(HTracker Tracker);

Delphi Syntax:

function FSDK_FreeTracker(Tracker: HTracker): integer;

C# Syntax:

int FSDK.FreeTracker(int Tracker);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

98

VB Syntax:

Function FSDKVB_FreeTracker (ByVal Tracker As Long) As Long

Java and Android Syntax:

int FSDK.FreeTracker(HTracker Tracker);

Parameters:

Tracker – handle of the tracker to be freed.

Return Value:

Returns FSDKE_OK if successful.

FSDK_ClearTracker Function

Clears the content of a tracker, releasing all its memory. The tracker handle stays valid. The

parameters are reset to their default values, so if you just need to clear the tracker’s memory,

consider setting the parameters with the FSDK_SetTrackerParameter or the

FSDK_SetTrackerMultipleParameters function again.

C++ Syntax:

int FSDK_ClearTracker(HTracker Tracker);

Delphi Syntax:

function FSDK_ClearTracker(Tracker: HTracker): integer;

C# Syntax:

int FSDK.ClearTracker(int Tracker);

VB Syntax:

Function FSDKVB_ClearTracker(ByVal Tracker As Long) As Long

Java and Android Syntax:

int FSDK.ClearTracker(HTracker Tracker);

Parameters:

Tracker – handle of the tracker to be cleared.

Return Value:

Returns FSDKE_OK if successful.

FSDK_SetTrackerParameter Function

Sets the parameter of a tracker. See the Tracker Parameters section for details.

C++ Syntax:

int FSDK_SetTrackerParameter(HTracker Tracker, const char *

ParameterName, const char * ParameterValue);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

99

Delphi Syntax:

function FSDK_SetTrackerParameter(Tracker: HTracker;

ParameterName, ParameterValue: PAnsiChar): integer;

C# Syntax:

int FSDK.SetTrackerParameter(int Tracker, string

ParameterName, string ParameterValue);

VB Syntax:

Function FSDKVB_SetTrackerParameter(ByVal Tracker As Long,

ByVal ParameterName As String, ByVal ParameterValue As String)

As Long

Java and Android Syntax:

int FSDK.SetTrackerParameter(HTracker Tracker, String

ParameterName, String ParameterValue);

Parameters:

Tracker – handle of the tracker to have parameters set parameters.

ParameterName – name of the parameter to be set.

ParameterValue – value of the parameter.

Return Value:

Returns FSDKE_OK if successful.

FSDK_SetTrackerMultipleParameters Function

Sets multiple parameters of a tracker.The parameters and their values are specified in the

following format:

"Parameter1=Value1[;Parameter2=Value2[;…]]"

See the Tracker Parameters section for details.

C++ Syntax:

int FSDK_SetTrackerMultipleParameters(HTracker Tracker, const

char * Parameters, int * ErrorPosition);

Delphi Syntax:

function FSDK_SetTrackerMultipleParameters(Tracker: HTracker;

Parameters: PAnsiChar; ErrorPosition: PInteger): integer;

C# Syntax:

int FSDK.SetTrackerMultipleParameters(int Tracker, string

Parameters, ref int ErrorPosition);

VB Syntax:

Function FSDKVB_SetTrackerMultipleParameters(ByVal Tracker As

Long, ByVal Parameters As String, ByRef ErrorPosition As Long)

As Long

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

100

Java and Android Syntax:

int FSDK.SetTrackerMultipleParameters(HTracker Tracker, String

Parameters, IntByReference ErrorPosition);

Parameters:

Tracker – handle of the tracker to have parameters set.

Parameters – string containing the parameters and corresponding values to be set.

ErrorPosition – pointer to the integer variable that will receive the position of the

character that caused syntax error in the string.

Return Value:

Returns FSDKE_OK if successful. In case of syntax error returns

FSDKE_SYNTAX_ERROR and sets the value of the ErrorPosition variable.

Example:

int err = 0;

FSDK_SetTrackerMultipleParameters(tracker,

"HandleArbitraryRotations=false;

DetermineFaceRotationAngle=false; InternalResizeWidth=100;

FaceDetectionThreshold=5;", &err);

FSDK_GetTrackerParameter Function

Retrieves the value of a tracker parameter. See the Tracker Parameters section for details.

C++ Syntax:

int FSDK_GetTrackerParameter(HTracker Tracker, const char *

ParameterName, char * ParameterValue, long long

MaxSizeInBytes);

Delphi Syntax:

function FSDK_GetTrackerParameter(Tracker: HTracker;

ParameterName, ParameterValue: PAnsiChar; MaxSizeInBytes:

int64): integer;

C# Syntax:

int FSDK.GetTrackerParameter(int Tracker, string

ParameterName, out string ParameterValue, long MaxSizeInBytes)

VB Syntax:

Function FSDKVB_GetTrackerParameter(ByVal Tracker As Long,

ByVal ParameterName As String, ByRef ParameterValue As String,

ByVal MaxSizeInBytes As Currency) As Long

Java and Android Syntax:

int FSDK.GetTrackerParameter(HTracker Tracker, String

ParameterName, String ParameterValue[], long MaxSizeInBytes);

Parameters:

Tracker – handle of the tracker whose parameter value is desired.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

101

ParameterName – name of the parameter to be retrieved.

ParameterValue – pointer to the output null-terminated string that will store the value of

the parameter.

MaxSizeInBytes –amount of memory allocated for the output string.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_INSUFFICIENT_BUFFER_SIZE if

there is not enough room to store the output string; however, the output string still fills up all

the space available.

FSDK_FeedFrame Function

Processes a video frame according to tracker’s parameters, and returns the identifiers of the

tracked faces. See the Understanding Identifiers, Tracker Memory and Tracker Parameters

sections for details.

C++ Syntax:

int FSDK_FeedFrame(HTracker Tracker, long long CameraIdx,

HImage Image, long long * FaceCount, long long * IDs, long

long MaxSizeInBytes);

Delphi Syntax:

function FSDK_FeedFrame(Tracker: HTracker; CameraIdx: int64;

Image: HImage; FaceCount: PInt64; IDs: PIDArray;

MaxSizeInBytes: int64): integer;

C# Syntax:

int FSDK.FeedFrame(int Tracker, long CameraIdx, int Image, ref

long FaceCount, out long[] IDs, long MaxSizeInBytes)

VB Syntax:

Function FSDKVB_FeedFrame(ByVal Tracker As Long, ByVal

CameraIdx As Currency, ByVal Image As Long, ByRef FaceCount As

Currency, ByRef IDs As Currency, ByVal MaxSizeInBytes As

Currency) As Long

Java and Android Syntax:

int FSDK.FeedFrame(HTracker Tracker, long CameraIdx, HImage

Image, long FaceCount[], long IDs[], long MaxSizeInBytes);

Parameters:

Tracker – handle of the tracker in which to process the frame.

CameraIdx – index of the camera; should be equal to 0 in the current release.

Image – the HImage handle of the video frame to process.

FaceCount – address of the 64-bit integer value that will receive the count of faces tracked

in the current frame.

IDs – address of the array of 64-bit integer values that will receive the identifiers of the

tracked faces.

MaxSizeInBytes – amount of memory allocated for the IDs array.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

102

Return Value:

Returns FSDKE_OK if successful.

FSDK_GetTrackerEyes Function

Retrieves the coordinates of the eye centers of a tracked face. The function accepts the

identifier returned by FSDK_FeedFrame. This identifier should be passed to

FSDK_GetTrackerEyes before the next call of FSDK_FeedFrame using the same tracker.

For the function to return the eye center coordinates, at least one of the parameters

DetectEyes, DetectFacialFeatures, RecognizeFaces, DetectGender, DetectAge or

DetectExpression must be set to true.

C++ Syntax:

int FSDK_GetTrackerEyes(HTracker Tracker, long long CameraIdx,

long long ID, FSDK_Features * FacialFeatures);

Delphi Syntax:

function FSDK_GetTrackerEyes(Tracker: HTracker; CameraIdx, ID:

int64; FacialFeatures: PFSDK_Features): integer;

C# Syntax:

int FSDK.GetTrackerEyes(int Tracker, long CameraIdx, long ID,

out TPoint[] FacialFeatures)

VB Syntax:

Function FSDKVB_GetTrackerEyes(ByVal Tracker As Long, ByVal

CameraIdx As Currency, ByVal ID As Currency, ByRef

FacialFeatures As TPoint) As Long

Java Syntax:

int FSDK.GetTrackerEyes(HTracker Tracker, long CameraIdx, long

ID, FSDK_Features.ByReference FacialFeatures);

Android Syntax:

int FSDK.GetTrackerEyes(HTracker Tracker, long CameraIdx, long

ID, FSDK_Features FacialFeatures);

Parameters:

Tracker – handle of the tracker where the coordinates of the eye centers will be retrieved.

CameraIdx – index of the camera; should be equal to 0 in the current release.

ID – identifier of the subject returned by FSDK_FeedFrame, whose eye center coordinates

will be received.

FacialFeatures – pointer to the FSDK_Features variable that will receive the eye center

coordinates.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID

was not returned by the previous FSDK_FeedFrame call.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

103

Returns FSDKE_ATTRIBUTE_NOT_DETECTED if eye centers were not tracked on the

previous FSDK_FeedFrame call.

FSDK_GetTrackerFacialFeatures Function

Retrieves the coordinates of a tracked face’s features. The function accepts the identifier

returned by FSDK_FeedFrame. This identifier should be passed to

FSDK_GetTrackerFacialFeatures before the next call of FSDK_FeedFrame with the same

tracker.

For the function to return the facial feature coordinates, either of the parameters

DetectFacialFeatures, DetectGender, DetectAge or DetectExpression should be set to true.

See the Tracker Parameters section for details.

C++ Syntax:

int FSDK_GetTrackerFacialFeatures(HTracker Tracker, long long

CameraIdx, long long ID, FSDK_Features * FacialFeatures);

Delphi Syntax:

function FSDK_GetTrackerFacialFeatures(Tracker: HTracker;

CameraIdx, ID: int64; FacialFeatures: PFSDK_Features):

integer;

C# Syntax:

int FSDK.GetTrackerFacialFeatures(int Tracker, long CameraIdx,

long ID, out TPoint[] FacialFeatures)

VB Syntax:

Function FSDKVB_GetTrackerFacialFeatures(ByVal Tracker As

Long, ByVal CameraIdx As Currency, ByVal ID As Currency, ByRef

FacialFeatures As TPoint) As Long

Java Syntax:

int FSDK.GetTrackerFacialFeatures(HTracker Tracker, long

CameraIdx, long ID, FSDK_Features.ByReference FacialFeatures);

Android Syntax:

int FSDK.GetTrackerFacialFeatures(HTracker Tracker, long

CameraIdx, long ID, FSDK_Features FacialFeatures);

Parameters:

Tracker – handle of the tracker from which to retrieve the facial feature coordinates.

CameraIdx – index of the camera; should be equal to 0 in the current release.

ID – identifier of the subject returned by FSDK_FeedFrame, whose facial feature coordinates

will be received.

FacialFeatures – pointer to the FSDK_Features variable to receive facial feature

coordinates.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID

was not returned by the previous FSDK_FeedFrame call.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

104

ReturnsFSDKE_ATTRIBUTE_NOT_DETECTED if facial features were not tracked on the

previous FSDK_FeedFrame call.

FSDK_GetTrackerFacePosition Function

Retrieves the position of a tracked face. The function accepts the identifier returned by

FSDK_FeedFrame. This identifier should be passed to FSDK_GetTrackerFacePosition before

the next call of FSDK_FeedFrame with the same tracker.

C++ Syntax:

int FSDK_GetTrackerFacePosition(HTracker Tracker, long long

CameraIdx, long long ID, TFacePosition * FacePosition);

Delphi Syntax:

function FSDK_GetTrackerFacePosition(Tracker: HTracker;

CameraIdx, ID: int64; FacePosition: PFacePosition): integer;

C# Syntax:

int FSDK.GetTrackerFacePosition(int Tracker, long CameraIdx,

long ID, ref TFacePosition FacePosition);

VB Syntax:

Function FSDKVB_GetTrackerFacePosition(ByVal Tracker As Long,

ByVal CameraIdx As Currency, ByVal ID As Currency, ByRef

facePosition As TFacePosition) As Long

Java Syntax:

int FSDK.GetTrackerFacePosition(HTracker Tracker, long

CameraIdx, long ID, TFacePosition.ByReference FacePosition);

Android Syntax:

int FSDK.GetTrackerFacePosition(HTracker Tracker, long

CameraIdx, long ID, TFacePosition FacePosition);

Parameters:

Tracker – handle of the tracker from which to retrieve the face position.

CameraIdx – index of the camera; should be equal to 0 in the current release.

ID – identifier of the subject returned by FSDK_FeedFrame whose face position will be

received.

FacePosition – pointer to the TFacePosition variable that will receive the face position.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID

was not returned by the previous FSDK_FeedFrame call.

FSDK_GetTrackerFacialAttribute Function

Given an attribute of a tracked face, retrieves its Values and their Confidences. The function

accepts the identifier returned by FSDK_FeedFrame. This identifier should be passed to

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

105

FSDK_GetTrackerFacialAttribute before the next call of FSDK_FeedFrame with the same

tracker.

The function allows for detecting gender when provided with the “Gender” attribute name, for

detecting age when provided with the “Age” attribute name and for detecting expression

when provided with the “Expression” attribute name. Refer to the

FSDK_DetectFacialAttributeUsingFeatures function description for details on attributes, their

Values and Confidences.

C++ Syntax:

int FSDK_GetTrackerFacialAttribute(HTracker Tracker, long long

CameraIdx, long long ID, const char * AttributeName, char *

AttributeValues, long long MaxSizeInBytes);

Delphi Syntax:

function FSDK_GetTrackerFacialAttribute(Tracker: HTracker;

CameraIdx, ID: int64; AttributeName, AttributeValues:

PAnsiChar; MaxSizeInBytes: int64): integer;

C# Syntax:

int FSDK.GetTrackerFacialAttribute(int Tracker, long

CameraIdx, long ID, string AttributeName, out string

AttributeValues, long MaxSizeInBytes);

VB Syntax:

Function FSDKVB_GetTrackerFacialAttribute(ByVal Tracker As

Long, ByVal CameraIdx As Currency, ByVal ID As Currency, ByVal

AttributeName As String, ByRef AttributeValues As String,

ByVal MaxSizeInBytes As Currency) As Long

Java and Android Syntax:

int FSDK.GetTrackerFacialAttribute(HTracker Tracker, long

CameraIdx, long ID, String AttributeName, String

AttributeValues[], long MaxSizeInBytes);

Parameters:

Tracker – handle of the tracker whose attribute will be retrieved.

CameraIdx – index of the camera; should be equal to 0 in the current release.

ID – identifier of a subject returned by FSDK_FeedFrame whose attribute will be retrieved.

AttributeName – name of the attribute.

AttributeValues – pointer to the null-terminated string that will receive the attribute

Values and their Confidences.

MaxSizeInBytes – amount of memory allocated for the output string.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID

was not returned by the previous FSDK_FeedFrame call. Returns

FSDKE_ATTRIBUTE_NOT_DETECTED if the specified attribute was not detected on the

previous FSDK_FeedFrame call. Returns FSDKE_UNKNOWN_ATTRIBUTE if the

specified attribute name is not supported. Returns FSDKE_INSUFFICIENT_BUFFER_SIZE

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

106

if there is not enough room to store the output string; however, the output string still fills up

all the space available.

FSDK_LockID Function

Locks an identifier. When an identifier is locked, at least one facial appearance of an identifier

will not be deleted during any possible purge. You should call this function before the

FSDK_SetName function. The function has no effect on identifiers which were already

tagged with a name. The call should be usually paired with FSDK_UnlockID call. When the

user does not set a name to a locked identifier, unlocking it allows it to become purged if

necessary for memory efficient memory use.

See the Locking Identifiers section for details. You may call this function with any identifier

regardless of when it was returned as long as it remains present in the tracker memory.

C++ Syntax:

int FSDK_LockID(HTracker Tracker, long long ID);

Delphi Syntax:

function FSDK_LockID(Tracker: HTracker; ID: int64): integer;

C# Syntax:

int FSDK.LockID(int Tracker, long ID);

VB Syntax:

Function FSDKVB_LockID(ByVal Tracker As Long, ByVal ID As

Currency) As Long

Java and Android Syntax:

int FSDK.LockID(HTracker Tracker, long ID);

Parameters:

Tracker – handle of the tracker in which to lock an identifier.

ID – identifier of the subject to lock.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID is

not present in the tracker memory.

FSDK_UnlockID Function

Unlocks the ID so it may be purged. You should call this function after the FSDK_LockID

call. The function has no effect on identifiers which were already tagged with a name.

See the Locking identifiers section for details. You may call this function with any identifier

regardless of when it was returned, as long as it is present in the tracker memory.

C++ Syntax:

int FSDK_UnlockID(HTracker Tracker, long long ID);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

107

Delphi Syntax:

function FSDK_UnlockID(Tracker: HTracker; ID: int64): integer;

C# Syntax:

int FSDK.UnlockID(int Tracker, long ID);

VB Syntax:

Function FSDKVB_UnlockID(ByVal Tracker As Long, ByVal ID As

Currency) As Long

Java and Android Syntax:

int FSDK.UnlockID(HTracker Tracker, long ID);

Parameters:

Tracker – handle of the tracker in which to unlock an identifier.

ID – identifier of the subject to unlock.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID is

not present in the tracker memory.

FSDK_PurgeID Function

Removes all facial appearances of the ID from the tracker memory. You must call this

function if there was a false acceptance (see the Dealing with false acceptances section) or if

you erroneously assigned equal names to different persons.

C++ Syntax:

int FSDK_PurgeID(HTracker Tracker, long long ID);

Delphi Syntax:

function FSDK_PurgeID(Tracker: HTracker; ID: int64): integer;

C# Syntax:

int FSDK.PurgeID(int Tracker, long ID);

VB Syntax:

Function FSDKVB_PurgeID(ByVal Tracker As Long, ByVal ID As

Currency) As Long

Java and Android Syntax:

int FSDK.PurgeID(HTracker Tracker, long ID);

Parameters:

Tracker – handle of the tracker in which to purge an identifier.

ID – identifier of the subject to purge.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID is

not present in the tracker memory.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

108

FSDK_GetName Function

Returns the name the identifier has been tagged with. You may call this function with any

identifier regardless of when it was returned, as long as it is present in the tracker memory.

C++ Syntax:

int FSDK_GetName(HTracker Tracker, long long ID, char * Name,

long long MaxSizeInBytes);

Delphi Syntax:

function FSDK_GetName(Tracker: HTracker; ID: int64; Name:

PAnsiChar; MaxSizeInBytes: int64): integer;

C# Syntax:

int FSDK.GetName(int Tracker, long ID, out string Name, long

MaxSizeInBytes);

VB Syntax:

Function FSDKVB_GetName(ByVal Tracker As Long, ByVal ID As

Currency, ByRef Name As String, ByVal MaxSizeInBytes As

Currency) As Long

Java and Android Syntax:

int FSDK.GetName(int Tracker, long ID, String Name[], long

MaxSizeInBytes);

Parameters:

Tracker – handle of the tracker in which to retrieve the name.

ID – identifier of a subject to retrieve the name of.

Name – identifier of the subject whose name is to be retrieved.

MaxSizeInBytes – amount of memory allocated for the output string.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_INSUFFICIENT_BUFFER_SIZE if

there is not enough room to store the output string; however, the output string still fills up all

the space available. Returns FSDKE_ID_NOT_FOUND if the specified ID is not present in

the tracker memory.

FSDK_SetName Function

Sets the name of an identifier. To erase the name tag, specify an empty name string. When

erasing the name tag because of a false acceptance, or because you erroneously assigned equal

names to different persons, you must also call the FSDK_PurgeID function (see the Dealing

with false acceptances section). The function will unlock the identifier if the name is

successfully set.

You may call this function with any identifier regardless of when it was returned, as long as it

is present in the tracker memory.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

109

C++ Syntax:

int FSDK_SetName(HTracker Tracker, long long ID, const char *

Name);

Delphi Syntax:

function FSDK_SetName(Tracker: HTracker; ID: int64; Name:

PAnsiChar): integer;

C# Syntax:

int FSDK.SetName(int Tracker, long ID, string Name);

VB Syntax:

Function FSDKVB_SetName(ByVal Tracker As Long, ByVal ID As

Currency, ByVal Name As String) As Long

Java and Android Syntax:

int FSDK.SetName(HTracker Tracker, long ID, String Name);

Parameters:

Tracker – handle of the tracker in which to set the name.

ID – identifier of the subject whose name is to be set.

Name – pointer to the null-terminated string containing the name of an identifier.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID is

not present in the tracker memory.

Returns FSDKE_INSUFFICIENT_TRACKER_MEMORY_LIMIT if there is not enough

room to store the identifier’s facial appearances in memory. See the Tracker Memory section

for details.

FSDK_GetIDReassignment Function

When provided with a subject’s ID received on earlier frames, returns the new subject’s ID if

there was a merger. See the Understanding Identifiers section for details. If an identifier was

not merged, the function returns the same ID value in the output variable. Note that the

function does not return an error if an identifier is not present in the tracker memory; instead;

the same ID value is returned in the output variable.

C++ Syntax:

int FSDK_GetIDReassignment(HTracker Tracker, long long ID,

long long * ReassignedID);

Delphi Syntax:

function FSDK_GetIDReassignment(Tracker: HTracker; ID: int64;

ReassignedID: PInt64): integer;

C# Syntax:

int FSDK.GetIDReassignment(int Tracker, long ID, ref long

ReassignedID);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

110

VB Syntax:

Function FSDKVB_GetIDReassignment(ByVal Tracker As Long, ByVal

ID As Currency, ByRef ReassignedID As Currency) As Long

Java and Android Syntax:

int FSDK.GetIDReassignment(HTracker Tracker, long ID, long

ReassignedID[]);

Parameters:

Tracker – handle of the tracker in which to get the reassigned ID value.

ID – identifier of the subject whose reassigned identifier is sought.

ReassignedID – pointer to the 64-bit integer value that will store the reassigned value of

an identifier.

Return Value:

Returns FSDKE_OK if successful.

FSDK_GetSimilarIDCount Function

Returns the number of identifiers that are similar to a given identifier. The function accepts

the identifier returned by FSDK_FeedFrame. This identifier should be passed to

FSDK_GetSimilarIDCount before the next call of FSDK_FeedFrame with the same tracker.

See the Understanding Identifiers section for details.

C++ Syntax:

int FSDK_GetSimilarIDCount(HTracker Tracker, long long ID,

long long * Count);

Delphi Syntax:

function FSDK_GetSimilarIDCount(Tracker: HTracker; ID: int64;

Count: PInt64): integer;

C# Syntax:

int FSDK.GetSimilarIDCount(int Tracker, long ID, ref long

Count);

VB Syntax:

FSDKVB_GetSimilarIDCount(ByVal Tracker As Long, ByVal ID As

Currency, ByRef Count As Currency) As Long

Java and Android Syntax:

int FSDK.GetSimilarIDCount(HTracker Tracker, long ID, long

Count[]);

Parameters:

Tracker – handle of the tracker in which to retrieve the number of similar identifiers.

ID – identifier of the subject for which to return the number of similar identifiers.

Count – pointer to the 64-bit integer value that will store the number of similar identifiers.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

111

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID

was not returned by the previous FSDK_FeedFrame call.

FSDK_GetSimilarIDList Function

Returns the list of identifiers that are similar to a given identifier. The function accepts the

identifier returned by FSDK_FeedFrame. This identifier should be passed to

FSDK_GetSimilarIDList before the next call of FSDK_FeedFrame with the same tracker. See

the Understanding Identifiers section for details.

C++ Syntax:

int FSDK_GetSimilarIDList(HTracker Tracker, long long ID, long

long * SimilarIDList, long long MaxSizeInBytes);

Delphi Syntax:

function FSDK_GetSimilarIDList(Tracker: HTracker; ID: int64;

SimilarIDList: PIDArray; MaxSizeInBytes: int64): integer;

C# Syntax:

int FSDK.GetSimilarIDList(int Tracker, long ID, out long[]

SimilarIDList, long MaxSizeInBytes)

VB Syntax:

Function FSDKVB_GetSimilarIDList(ByVal Tracker As Long, ByVal

ID As Currency, ByRef SimilarIDList As Currency, ByVal

MaxSizeInBytes As Currency) As Long

Java and Android Syntax:

int FSDK.GetSimilarIDList(HTracker Tracker, long ID, long

SimilarIDList[], long MaxSizeInBytes);

Parameters:

Tracker – handle of the tracker in which to get the list of similar identifiers.

ID – identifier of the subject for which to return the list of similar identifiers.

SimilarIDList – pointer to the array of 64-bit integer values that will store the list of

similar identifiers.

MaxSizeInBytes – amount of memory allocated for the output array.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID

was not returned by the previous FSDK_FeedFrame call. Returns

FSDKE_INSUFFICIENT_BUFFER_SIZE if there is not enough room to store the output

string; however, the output string still fills up all the space available.

FSDK_GetAllNames Function

Returns the list of names that an identifier can have. The function accepts the identifier

returned by FSDK_FeedFrame. This identifier should be passed to FSDK_GetAllNames

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

112

before the next call of FSDK_FeedFrame with the same tracker. See the Understanding

Identifiers and Dealing with false acceptances sections for details.

The function returns all names that belong to a given identifier, and similar identifiers,

separated by a semicolon. The output format is:

"Name1[;Name2[;…]]"

You should call this function instead of FSDK_GetName whenever possible, and then parse

the returned string for all returned names. Alternatively, you may implement the functionality

of FSDK_GetAllNames, calling FSDK_GetName on the given identifier, then

FSDK_GetSimilarIDCount and FSDK_GetSimilarIDList to get the list of similar identifiers,

then finally call FSDK_GetName on that list.

C++ Syntax:

int FSDK_GetAllNames(HTracker Tracker, long long ID, char *

Names, long long MaxSizeInBytes);

Delphi Syntax:

function FSDK_GetAllNames(Tracker: HTracker; ID: int64; Names:

PAnsiChar; MaxSizeInBytes: int64): integer;

C# Syntax:

int FSDK.GetAllNames(int Tracker, long ID, out string Names,

long MaxSizeInBytes);

VB Syntax:

Function FSDKVB_GetAllNames(ByVal Tracker As Long, ByVal ID As

Currency, ByRef Names As String, ByVal MaxSizeInBytes As

Currency) As Long

Java and Android Syntax:

int FSDK.GetAllNames(HTracker Tracker, long ID, String

Names[], long MaxSizeInBytes);

Parameters:

Tracker – handle of the tracker in which to retrieve the names.

ID – identifier of the subject whose possible names are to be retrieved.

Names – pointer to the null-terminated string that will receive the possible names of an

identifier.

MaxSizeInBytes – amount of memory allocated for the output string.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_ID_NOT_FOUND if the specified ID

was not returned by the previous FSDK_FeedFrame call. Returns

FSDKE_INSUFFICIENT_BUFFER_SIZE if there is not enough room to store the output

string; however, the output string still fills up all the space available.

FSDK_SaveTrackerMemoryToFile Function

Saves the memory of a tracker to a file. Note that tracker parameters, along with its face

tracking state, are not saved. See the Saving and Loading Tracker Memory section for details.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

113

C++ Syntax:

int FSDK_SaveTrackerMemoryToFile(HTracker Tracker, const char

* FileName);

Delphi Syntax:

function FSDK_SaveTrackerMemoryToFile(Tracker: HTracker;

FileName: PAnsiChar): integer;

C# Syntax:

int FSDK.SaveTrackerMemoryToFile(int Tracker, string

FileName);

VB Syntax:

Function FSDKVB_SaveTrackerMemoryToFile(ByVal Tracker As Long,

ByVal FileName As String) As Long

Java and AndroidSyntax:

int FSDK.SaveTrackerMemoryToFile(HTracker Tracker, String

FileName);

Parameters:

Tracker – handle of the tracker to save.

FileName – pointer to the null-terminated string containing the name of the file to which the

tracker memory will be saved.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_IO_ERROR if an I/O error has occurred.

FSDK_LoadTrackerMemoryFromFile Function

Loads the memory of a tracker from a file. Note that tracker parameters, along with its face

tracking state, are not loaded. See the Saving and Loading Tracker Memory section for

details.

C++ Syntax:

int FSDK_LoadTrackerMemoryFromFile(HTracker * Tracker, const

char * FileName);

Delphi Syntax:

function FSDK_LoadTrackerMemoryFromFile(Tracker: PHTracker;

FileName: PAnsiChar): integer;

C# Syntax:

int FSDK.LoadTrackerMemoryFromFile(ref int Tracker, string

FileName);

VB Syntax:

Function FSDKVB_LoadTrackerMemoryFromFile(ByRef Tracker As

Long, ByVal FileName As String) As Long

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

114

Java and Android Syntax:

int FSDK.LoadTrackerMemoryFromFile(HTracker Tracker, String

FileName);

Parameters:

Tracker – pointer that will store the handle of the loaded tracker.

FileName – pointer to the null-terminated string containing the name of a file from which

the tracker memory will be to loaded.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_BAD_FILE_FORMAT if the file has

unsupported format. Returns FSDKE_UNSUPPORTED_FILE_VERSION if the file was

saved with Luxand FaceSDK of an unsupported version. Returns

FSDKE_FILE_NOT_FOUND if there was an error opening the file. Returns

FSDKE_IO_ERROR if an I/O error has occurred.

FSDK_GetTrackerMemoryBufferSize Function

Returns the size of a buffer (in bytes) needed to save the memory of a tracker.

C++ Syntax:

int FSDK_GetTrackerMemoryBufferSize(HTracker Tracker, long

long * BufSize);

Delphi Syntax:

function FSDK_GetTrackerMemoryBufferSize(Tracker: HTracker;

BufSize: PInt64): integer;

C# Syntax:

int FSDK.GetTrackerMemoryBufferSize(int Tracker, ref long

BufSize);

VB Syntax:

Function FSDKVB_GetTrackerMemoryBufferSize(ByVal Tracker As

Long, ByRef BufSize As Currency) As Long

Java and Android Syntax:

int FSDK.GetTrackerMemoryBufferSize(HTracker Tracker, long

BufSize[]);

Parameters:

Tracker – handle of the tracker whose buffer size needs calculation.

BufSize – pointer to the 64-bit integer variable that will store the size of a buffer.

Return Value:

Returns FSDKE_OK if successful.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

115

FSDK_SaveTrackerMemoryToBuffer Function

Saves the memory of a tracker to a buffer. Note that tracker parameters, along with its face

tracking state, are not saved. See the Saving and Loading Tracker Memory section for details.

C++ Syntax:

int FSDK_SaveTrackerMemoryToBuffer(HTracker Tracker, unsigned

char * Buffer, long long MaxSizeInBytes);

Delphi Syntax:

function FSDK_SaveTrackerMemoryToBuffer(Tracker: HTracker; var

Buffer; MaxSizeInBytes: int64): integer;

C# Syntax:

int FSDK.SaveTrackerMemoryToBuffer(int Tracker, out byte[]

Buffer, long MaxSizeInBytes);

VB Syntax:

Function FSDKVB_SaveTrackerMemoryToBuffer(ByVal Tracker As

Long, ByRef Buffer As Byte, ByVal MaxSizeInBytes As Currency)

As Long

Java and Android Syntax:

int FSDK.SaveTrackerMemoryToBuffer(HTracker Tracker, byte

Buffer[]);

Parameters:

Tracker – handle of the tracker to save.

Buffer – pointer to the buffer to which the tracker memory will be saved.

MaxSizeInBytes – amount of memory allocated for the output buffer, in bytes.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_INSUFFICIENT_BUFFER_SIZE if

there is not enough room to store the output buffer.

FSDK_LoadTrackerMemoryFromBuffer Function

Loads the memory of a tracker from a buffer. Note that tracker parameters, along with its face

tracking state, are not loaded. See the Saving and Loading Tracker Memory section for

details.

C++ Syntax:

int FSDK_LoadTrackerMemoryFromBuffer(HTracker * Tracker, const

unsigned char * Buffer);

Delphi Syntax:

function FSDK_LoadTrackerMemoryFromBuffer(Tracker: PHTracker;

var Buffer): integer;

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

116

C# Syntax:

int FSDK.LoadTrackerMemoryFromBuffer(ref int Tracker, byte[]

Buffer);

VB Syntax:

Function FSDKVB_LoadTrackerMemoryFromBuffer(ByRef Tracker As

Long, ByRef Buffer As Byte) As Long

Java and Android Syntax:

int FSDK.LoadTrackerMemoryFromBuffer(HTracker Tracker, byte

Buffer[]);

Parameters:

Tracker – pointer to store the handle of a loaded tracker.

Buffer – pointer to the buffer from which to load the tracker memory.

Return Value:

Returns FSDKE_OK if successful. Returns FSDKE_BAD_FILE_FORMAT if the file has

unsupported format. Returns FSDKE_UNSUPPORTED_FILE_VERSION if the file was

saved with Luxand FaceSDK of an unsupported version.

Multi-Core Support
The following FaceSDK functions use multiple CPU cores, thus speeding up the calculations:

FSDK_DetectEyes,

FSDK_DetectEyesInRegion,

FSDK_DetectFace,

FSDK_DetectMultipleFaces,

FSDK_DetectFacialFeatures,

FSDK_DetectFacialFeaturesInRegion,

FSDK_GetFaceTemplate,

FSDK_GetFaceTemplateInRegion,

FSDK_GetFaceTemplateUsingFeatures,

FSDK_GetFaceTemplateUsingEyes,

FSDK_FeedFrame.

By default, these functions use all available processor cores. To get the number of processor

cores used, call the FSDK_GetNumThreads function. To limit the number of processor cores

used, call the FSDK_SetNumThreads function. Calling FSDK_SetNumThreads(1) will

disable multi-core support.

Note that each of these functions forks into a number of threads on each call. It is not

recommended to use nested parallelism when calling these functions; if you need nested

parallelism, you may limit the number of threads with the FSDK_SetNumThreads functions.

For example, if your application runs in several threads, and each thread executes

FSDK_DetectFace (which uses all available cores), this is acceptable; however, if each thread

forks into several threads, each executing FSDK_DetectFace, this could potentially reach the

limit of resources available.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

117

It is safe to use extensions for parallel computation (like OpenMP) with the above FaceSDK

functions, if they are executed from a single thread. For example, the following C++ sample

code is acceptable:

#pragma omp parallel for

 for (int i = 0; i < 100; i++)

 FSDK_DetectFace(...);

However, if your application forks into multiple threads, it is not recommended to execute the

above FaceSDK functions within OpenMP statements in such threads. If you must, consider

limiting the number of cores used by FaceSDK with the FSDK_SetNumThreads function.

FSDK_GetNumThreads Function

Retrieves the number of processor cores used by FaceSDK.

C++ Syntax:

int FSDK_GetNumThreads(int * Num);

Delphi Syntax:

function FSDK_GetNumThreads(Num: PInteger): integer;

C# Syntax:

int FSDK.GetNumThreads(ref int Num);

VB Syntax:

Function FSDKVB_GetNumThreads(ByRef Num As Long) As Long

Java and Android Syntax:

int FSDK.GetNumThreads(int Num[]);

Parameters:

Num – pointer to an integer valueto receive the number of threads used by FaceSDK.

Return Value:

Returns FSDKE_OK if successful.

FSDK_SetNumThreads Function

Sets the number of processor cores to be used by FaceSDK. If you set the number of cores to

1, support for multiple cores will be disabled, and the SDK will use only a single processor

core.

C++ Syntax:

int FSDK_SetNumThreads(int Num);

Delphi Syntax:

function FSDK_SetNumThreads(Num: integer): integer;

C# Syntax:

int FSDK.SetNumThreads(int Num);

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

118

VB Syntax:

Function FSDKVB_SetNumThreads(ByVal Num As Long) As Long

Java and Android Syntax:

int FSDK.SetNumThreads(int Num);

Parameters:

Num – the number of cores to be used by FaceSDK.

Return Value:

Returns FSDKE_OK if successful.

Thread Safety
This chapter describes using FaceSDK in applications that execute FaceSDK functions from

multiple threads. If your program runs in a single thread (by default, this happens in almost all

environments), you can skip this chapter.

Most FaceSDK functions are safe for multithreaded operations. The functions not guaranteed

to be thread-safe are

FSDK_Initialize,

FSDK_Finalize,

FSDK_ActivateLibrary,

FSDK_GetLicenseInfo,

FSDK_GetHardware_ID,

FSDK_SetNumThreads.

When working with cameras in multiple threads on Windows platforms, make sure that each

thread calls the FSDK_InitializeCapturing function and the FSDK_FinalizeCapturing function

when the thread is done. The following functions are thread safe (on all supported platforms)

given that no different threads are simultaneously accessing the same camera handle:

FSDK_GetVideoFormatList,

FSDK_FreeVideoFormatList,

FSDK_SetVideoFormat,

FSDK_OpenVideoCamera,

FSDK_CloseVideoCamera,

FSDK_GrabFrame.

The following functions set global parameters that have effect on each thread:

FSDK_SetFaceDetectionParameters,

FSDK_SetFaceDetectionThreshold,

FSDK_SetJpegCompressionQuality,

FSDK_SetCameraNaming,

FSDK_SetHTTPProxy,

FSDK_SetNumThreads.

Note that HImage is safe only for multiple simultaneous reads or single write. Do not read

from (e.g. with FSDK_DetectFace) and write to (e.g. with FSDK_FreeImage) the same

HImage handle at one time.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

119

For more information on thread safety of Tracker API, see the Thread Safety section in the

Tracker API chapter.

Migration

Migration from FaceSDK 7.2, 7.2.1 to FaceSDK 8.0, 8.1

For compatibility with the latest Xcode versions the libfsdk-static.a and libfsdk-static_64.a

libraries for iOS have been joined into a single library libfsdk-static.a.

NET applications now use FaceSDK.NET.dll built from the samples\advanced\.NET wrapper

source, so adding the appropriate binary file (facesdk.dll, libfsdk.dylib or libfsdk.so) is

required.

The minimum supported iOS version is 9.0.

The minimum supported Android version is 5.0.

The minimum supported Windows version is Windows 7.

The minimum supported macOS version is 10.13.

Migration from FaceSDK 7.1 to FaceSDK 7.2, 7.2.1

InternalResizeWidth parameter values larger than 512 are now supported to allow for the

detection of even small faces on high-resolution images.

JPEG images are now automatically rotated on load using the EXIF data.

The minimum supported Linux versions are CentOS/RHEL 7. Older Linux versions are no

longer supported.

The minimum supported Windows version is Windows Vista.

Migration from FaceSDK 6.5.1 to FaceSDK 7.0, 7.1

Face Detection

Version 7.0 introduces a new face detection engine, which is more accurate when detecting

faces that are rotated out of plane, blurred, backlit, or in low lighting conditions.

The new engine does not currently support InternalResizeWidth parameter values

larger than 512 (see the FSDK_SetFaceDetectionParameters chapter). If you are detecting

small faces on high-resolution images with large InternalResizeWidth values, consider

splitting such images into parts.

When the InternalResizeWidth is set to 512, faces that are heavily cropped and

occupy almost all of the image (such as when a face is too close to the camera) could be

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

120

detected less often than when smaller InternalResizeWidth values are used. However,

large InternalResizeWidth values are not necessary when detecting such faces. In this

case, consider setting the InternalResizeWidth to 256 or less.

As the new engine uses color information, the face detection rates on grayscale images could

be lower (especially on small faces).

You may find that small faces are detected less often. In this case, try increasing the

InternalResizeWidth value, as the internal meaning of InternalResizeWidth

has changed in the engine.

Template format changes

Version 7.0 improves the accuracy of the FSDK_GetFaceTemplate and FSDK_MatchFaces

functions. Templates are extracted in such a way that the false acceptance rates are decreased

when matching blurred, low-lit, and out-of-plane faces.

The accuracy of matching templates extracted by previous FaceSDK versions is unchanged.

To enjoy the increased accuracy, consider re-extracting your templates from the source

images by using version 7.0.

If you are using Tracker API with the KeepFaceImages parameter set to true, the Tracker

facial appearances will be automatically re-extracted when the Tracker memory, saved with

versions 6.5 or 6.5.1, is loaded (using the FSDK_LoadTrackerMemoryFromFile or

FSDK_LoadTrackerMemoryFromBuffer functions). This may take some time, depending on

the size of your Tracker memory.

Removal of libstdc++ dependency on iOS

FaceSDK 7.0 for iOS has removed the dependency on the libstdc++ library to increase

compatibility with Xcode 10. FaceSDK sample applications for iOS are no longer using

libstdc++. To switch from using libstdc++ to using libc++ in your Xcode project, visit Build

Settings – C++ Standard Library. iOS 5.x and 6.x are no longer supported.

Migration from FaceSDK 6.5 to FaceSDK 6.5.1

The 6.5.1 version improves the extraction of facial templates from images taken under very

low lighting conditions. As the 6.5 version might produce higher false acceptance rates on

such images, it is recommended that you re-extract your facial templates from the source

pictures using the 6.5.1 version.

If you were using Tracker API with the KeepFaceImages parameter set to true, the Tracker

facial appearances will be automatically re-extracted when the Tracker memory, saved with

the 6.5 version, is loaded (using the FSDK_LoadTrackerMemoryFromFile or

FSDK_LoadTrackerMemoryFromBuffer functions). This may take some time, depending on

the size of your Tracker memory. If you were using the Tracker API in very low light, it is

recommended that you start the Tracker memory from scratch and re-enroll your subjects.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

121

Migration from FaceSDK 6.3, 6.3.1, 6.4 to FaceSDK 6.5

Template format changes

The 6.5 version improves face matching accuracy. It achieves a true acceptance rate of

99.83% and a false acceptance rate of 0.1% for the NIST FRGC protocol, ROC1 (compared

to the 93.9% true acceptance rate achieved by the 6.4 version).

To achieve the accuracy increase, it was necessary to change the format of the face template

(the FSDK_FaceTemplate structure). The size of the face template was decreased to 1040

bytes. To migrate to the 6.5 version and start using the new face templates, you need to update

the Luxand FaceSDK interface header files in your project (see Using FaceSDK with

Programming Languages) and rebuild your application. If you were relying on the size of the

old face template structure (13324 bytes), for example, while saving it to a database, you need

to change this value to 1040.

As the new face template is not compatible with the face template from previous versions,

you need to re-extract the templates for every face in your database (with the

FSDK_GetFaceTemplate, FSDK_GetFaceTemplateInRegion, or

FSDK_GetFaceTemplateUsingFeatures functions) from the source pictures. As the template

format may change again in future versions, it is recommended that you store both the

original face images and their templates in the database.

The 6.5 version increased its matching accuracy, because of its more sophisticated models.

However, such models require more calculations. The speed of template extraction is now

lower than in the 6.4 version. This means that on slow devices, you may get lower frame rates

when extracting face templates, with either the FSDK_GetFaceTemplate,

FSDK_GetFaceTemplateInRegion, or FSDK_GetFaceTemplateUsingFeatures functions.

Template matching

The 6.5 version substantially increases the speed of face matching on most platforms. You are

unlikely to require any code changes to adapt to this.

Tracker API changes

Since the template format has changed, the Tracker memory from previous Luxand FaceSDK

versions is not compatible with the 6.5 version. This means you cannot load the Tracker

memory saved with Luxand FaceSDK 6.4 (and earlier) using the

FSDK_LoadTrackerMemoryFromFile or FSDK_LoadTrackerMemoryFromBuffer functions.

To migrate to the 6.5 version, you need to start a new Tracker memory file and enroll all your

subjects again.

If it is not possible for you to regenerate the templates or start a new Tracker memory, please

contact our support at https://www.luxand.com/support/ .

To make the transition to new template formats easier when using Tracker API, we added the

KeepFaceImages parameter. When set to true (which is the default value), it will store the

original facial images in the Tracker memory. If the template format changes in the new

version of Tracker API, you will be able to convert your previous Tracker memory to the new

template format automatically, so you won’t need to reenroll your subjects. If you don’t like

the original facial images to be stored in the Tracker memory, you need to explicitly set this

parameter to false. See the Storing original facial images section for more details.

As the speed of template extraction has decreased compared to the 6.4 version, you may get

lower frame rates when the RecognizeFaces parameter is set to true. In older versions, it was

https://www.luxand.com/support/

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

122

recommended that higher frame rates were preferable, in order that Tracker API could collect

more facial appearances of a person per unit of time, which positively affected the accuracy

(see the Tuning for Optimal Performance chapter). However, the Tracker API in the 6.5

version is less affected by the frame rate, because it has more robust face matching. Even if

you’re processing about 1 frame per second on a slow device, it is usually enough for Tracker

API to efficiently recognize persons; even with that frame rate, you’re likely to get much

higher recognition rates than in the 6.4 version with higher frame rates.

Note that if your RecognizeFaces is set to false when using Tracker API (for example, when

you only detect faces or facial features), your frame rate will not decrease.

The RecognitionPrecision parameter now has no effect and is not recommended for

use.

Migration from FaceSDK 6.2 to FaceSDK 6.3, 6.3.1, 6.4

The 6.3 version increases minimal OS version requirements. Applications developed with

Luxand FaceSDK 6.3 will not support any Windows versions earlier than Windows XP SP3

or Windows 2003 SP2 and will not support any macOS versions earlier than 10.7.

If you are using Luxand FaceSDK with Microsoft .NET, note that FaceSDK.NET.dll now

requires .NET 4.0 or higher. You need to redistribute Microsoft Visual C++ Redistributable

for Visual Studio 2017 with your application.

If you are using an older version of .NET (for example, 2.0, 3.0 or 3.5), you must switch to

the component available in the source code form in the samples\advanced\.NET

wrapper directory. Note that this component is actually a wrapper for facesdk.dll that is

linked dynamically, so facesdk.dll must be redistributed with the application that uses this

wrapper. The LiveRecognition sample includes projects for Microsoft C# 2005/2008 and

Visual Basic .NET 2005/2008 that are using this wrapper.

The LiveFacialFeatures, GenderRecognition and ExpressionRecognition samples were

updated to be compatible with iOS 11. If your code was based on these samples, update your

code as indicated below. You need to implement the changes as per the illustration (in short,

moving the code that creates the cache from drawFrameWithWidth to onGLInit). These

changes were implemented in the TrackingViewController.mm file of the samples.

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

123

Migration from FaceSDK 6.0, 6.0.1, 6.1 to FaceSDK 6.2

The 6.2 version adds 4 new facial feature points (numbered 66 to 69), detecting 70 facial

features instead of 66 in the previous release. The following constants are added:

FSDKP_FACE_CONTOUR14,

FSDKP_FACE_CONTOUR15,

FSDKP_FACE_CONTOUR16,

FSDKP_FACE_CONTOUR17.

The numbering of the 66 facial features detected previously was not changed. It means that

the new numbering is backwards compatible with the previous numbering. When migrating to

the 6.2 or 6.3 version, make sure that you are using the new header files (or wrappers), since

the FSDK_Features type now contains 4 more points.

The FSDK_GetFaceTemplateUsingFeatures function still employs only the first 66 facial

features.

The performance of retrieving live video in the LiveFacialFeatures sample for iOS and

Android is increased. If you were using this sample code in your project, consider replacing

the corresponding parts of your code to increase the performance of your app.

Migration from FaceSDK 5.0, 5.0.1 to FaceSDK 6.0, 6.0.1, 6.1

Important changes for users migrating to Luxand FaceSDK 6.0, 6.01 or 6.1 from the 5.0 or

5.0.1 versions:

The FSDK_GetFaceTemplate and FSDK_GetFaceTemplateInRegion functions now detect

facial features with the same accuracy as the FSDK_DetectFacialFeatures function. The

accuracy of face recognition is now the same regardless of whether you call

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

124

FSDK_GetFaceTemplate/FSDK_GetFaceTemplateInRegion or first detect facial features and

then pass them to the FSDK_GetFaceTemplateUsingFeatures function.

The recognition accuracy of Tracker API when RecognitionPrecision=1 is now independent

of the values of the DetectFacialFeatures or DetectGender parameters.

The FacialFeatureJitterSuppression parameter of Tracker API now allows for better facial

feature smoothing; however, its default setting may consume more processor resources. You

may set its value to 0 if you need to consume fewer resources.

Migration from FaceSDK 4.0 to FaceSDK 5.0, 5.0.1

Important changes for users migrating to Luxand FaceSDK 5.0 or 5.0.1 from the 4.0 version:

The function FSDK_GetFaceTemplateUsingFeatures is no longer deprecated. The function

expects that the coordinates of all facial features are detected. If you are passing just the

coordinates of eye centers (detected with FSDK_DetectEyes, FSDK_DetectEyesInRegion) to

the function, call FSDK_GetFaceTemplateUsingEyes instead.

The format of the face template has changed. The size of the template is now 13324 bytes. If

you have stored face templates in a database, you must recreate them from the original photos

by calling the FSDK_GetFaceTemplate or FSDK_GetFaceTemplateInRegion functions.

The FSDK_MatchFaces function now returns an error when the template has an invalid

format or when the formats of the templates are not supported (that is, when face templates

was created with an unsupported version of Luxand FaceSDK).

If you were calling FSDK_GetFaceTemplate or FSDK_GetFaceTemplateInRegion, you may

find that they consume more time. This is because these functions extract face templates with

higher accuracy. If you need higher performance, replace these calls with FSDK_DetectEyes

or FSDK_DetectEyesInRegion, and call FSDK_GetFaceTemplateUsingEyes. See the Face

Matching section for details.

On the other hand, if you were detecting eyes and then passing their coordinates to

FSDK_GetFaceTemplateUsingEyes, you need to replace this call together with the detection

of eye centers to the FSDK_GetFaceTemplate or FSDK_GetFaceTemplateInRegion function

to achieve the higher accuracy available in the 5.0 version.

Migration from FaceSDK 3.0 to FaceSDK 4.0

Recommendations on how to migrate from version 3.0 to version 4.0 are included.

1. The 4.0 version introduces a new high-quality algorithm for facial feature detection.

The new version detects 66 facial features (see the Detected Facial Features chapter).

2. The 4.0 version enhances the accuracy of inner facial feature (nose, eyes, and mouth)

detection. To make this enhancement possible, facial feature points of the upper part

of the head were removed. The following facial feature points (and their

corresponding constants) were removed:

FSDKP_FACE_CONTOUR3, FSDKP_FACE_CONTOUR4,

FSDKP_FACE_CONTOUR5, FSDKP_FACE_CONTOUR6,

FSDKP_FACE_CONTOUR7, FSDKP_FACE_CONTOUR8,

FSDKP_FACE_CONTOUR9, FSDKP_FACE_CONTOUR10,

FSDKP_FACE_CONTOUR11

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

125

If you were using some of these features, you may calculate their approximate

positions by relying on the coordinates of other facial features.

3. You may find that FaceSDK consumes more CPU resources than the previous version.

The SDK uses all available CPU cores for face detection and recognition functions,

achieving higher speed. If you need the SDK to use just a single core (as in the

previous version), use the FSDK_SetNumThreads function.

4. The following functions are deprecated and will not be supported in the future Luxand

FaceSDK versions: FSDK_GetFaceTemplateUsingFeatures

Migration from FaceSDK 2.0 to FaceSDK 3.0

This section tells about changes in FaceSDK 3.0 as compared to FaceSDK 2.0. There are also

recommendations on how to migrate from version 2.0 to version 3.0.

1. As version 3.0 has introduced a new enhanced face recognition algorithm, the format

of a template changed as well. Now it is enough to detect only eye centers, rather than

all features to build a template. If your application used to detect facial features and

then created a template using detected features, now the feature detection stage can be

skipped or replaced by detection of eye centers (i.e. FSDK_DetectFacialFeatures can

be replaced by FSDK_DetectEyes). The size of a template was reduced to 16384

bytes. If your application used a database of saved templates, it is necessary to recreate

these templates using source images.

2. New version introduces new functions for quick detection of eye centers –

FSDK_DetectEyes and FSDK_DetectEyesInRegion. These functions are

recommended for use if it is necessary to detect eye centers in real time.

3. The meaning of similarity returned by FSDK_MatchFaces function has changed. Now

similarity is approximately equal to the probability that templates belong to one and

the same person. More information on this topic can be found in Face Matching

chapter.

4. The new FSDK_SetCameraNaming function is added. It determines what the

FSDK_GetCameraList function returns – either the list of camera names available in

the system, or the list of unique device paths of these cameras. (It may be required if

two similar webcams of the same manufacturer are plugged in to the computer.)

5. Camera management functions are included into facesdk.dll. If you used camera

management in your applications, you may remove facesdkcam.dll and header files

related to facesdkcam.

6. .NET wrapper does not require facesdk.dll. The camera management functions are

also included into FaceSDK.NET.dll (but they are still located in class FSDKcam).

Now the wrapper is located in the directories \bin\win32\ for 32-bit applications

and \bin\win64\ for 64-bit applications.

7. The following functions have been removed from the library and will not be

supported: FSDK_LocateFace, FSDK_LocateFacialFeatures,

FSDK_ExtractFaceImage.

8. The following functions are deprecated and will not be supported in the future Luxand

FaceSDK versions: FSDK_GetFaceTemplateUsingFeatures

Error Codes
The FaceSDK library defines the following error codes:

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

126

Error Name Value

FSDKE_OK 0

FSDKE_FAILED –1

FSDKE_NOT_ACTIVATED –2

FSDKE_OUT_OF_MEMORY –3

FSDKE_INVALID_ARGUMENT –4

FSDKE_IO_ERROR –5

FSDKE_IMAGE_TOO_SMALL –6

FSDKE_FACE_NOT_FOUND –7

FSDKE_INSUFFICIENT_BUFFER_SIZE –8

FSDKE_UNSUPPORTED_IMAGE_EXTENSION –9

FSDKE_CANNOT_OPEN_FILE –10

FSDKE_CANNOT_CREATE_FILE –11

FSDKE_BAD_FILE_FORMAT –12

FSDKE_FILE_NOT_FOUND –13

FSDKE_CONNECTION_CLOSED -14

FSDKE_CONNECTION_FAILED -15

FSDKE_IP_INIT_FAILED -16

FSDKE_NEED_SERVER_ACTIVATION -17

FSDKE_ID_NOT_FOUND -18

FSDKE_ATTRIBUTE_NOT_DETECTED -19

FSDKE_INSUFFICIENT_TRACKER_MEMORY_LIMIT -20

FSDKE_UNKNOWN_ATTRIBUTE -21

FSDKE_UNSUPPORTED_FILE_VERSION -22

FSDKE_SYNTAX_ERROR -23

FSDKE_PARAMETER_NOT_FOUND -24

FSDKE_INVALID_TEMPLATE -25

FSDKE_UNSUPPORTED_TEMPLATE_VERSION -26

FSDKE_CAMERA_INDEX_DOES_NOT_EXIST -27

FSDKE_PLATFORM_NOT_LICENSED -28

Copyright © 2005–2023 Luxand, Inc. https://www.luxand.com

127

FSDKE_TENSORFLOW_NOT_INITIALIZED -29

Library Information
The FaceSDK library uses:

• TensorFlow-Lite © Google, LLC;

• libjpeg-turbo (copyright by Miyasaka Masaru, TigerVNC and VirtualGL projects);

• libcurl © Daniel Stenberg;

• libpng © Glenn Randers-Pehrson;

• easybmp © The EasyBMP Project (http://easybmp.sourceforge.net);

• RSA Data Security, Inc. MD5 Message-Digest Algorithm.

http://easybmp.sourceforge.net/

